Search results: Found 37

Listing 1 - 10 of 37 << page
of 4
>>
Sort by
3D Printing of Metals

Author:
ISBN: 9783038425915 9783038425922 Year: Pages: VIII, 156 DOI: 10.3390/books978-3-03842-592-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2017-12-06 12:54:59
License:

Loading...
Export citation

Choose an application

Abstract

Three-dimensional printing is a futuristic technology capable of transforming the ways in which we make components and devices. It is almost certain that this technique will find its niche in the manufacturing sector in the very near future. In view of the growing importance of 3D printing, this book addresses key issues related to emerging science and technology in this area. Detailed and informative articles are presented in relation to a wide variety of materials, including those based on critical engineering metals such as aluminum, magnesium, titanium and composites. Advances in various techniques, such as electron beam melting and selective laser melting are discussed. Of key importance in the area of materials science is the end properties of the materials following processing. Accordingly, the articles presented critically discuss the effects of microstructural features such as porosity, forming defects and the heat treatment induced effects on the mechanical properties. Applications covered in these articles are targeted at the aerospace, automobile, defense and aerospace sectors. Overall, the information presented in this book is of significant importance for academic and industrial-based researchers who wish to inform themselves regarding this upcoming highly promising manufacturing technique.

Aluminum Alloys

Author:
ISBN: 9783038424741 9783038424758 Year: Pages: 162374 DOI: 10.3390/books978-3-03842-475-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mining and Metallurgy
Added to DOAB on : 2018-01-31 13:07:31
License:

Loading...
Export citation

Choose an application

Abstract

Aluminium is the world’s most abundant metal and is the third most common element, comprising 8% of the Earth’s crust. The versatility of aluminium makes it the most widely used metal after steel. By utilising various combinations of their advantageous properties such as strength, lightness, corrosion resistance, recyclability, and formability, aluminium alloys are being employed in an ever-increasing number of applications. In the recent decade, a rapid new development has been made in production of aluminium alloys, and new techniques of casting, forming, welding, and surface modification, have been evolved to improve the structural integrity of aluminium alloys. This Special Issue covers wide scope of recent progress and new developments regarding all aspects of aluminium alloys, including processing, forming, welding, microstructure and mechanical property, creep, fatigue, corrosion and surface behavior, thermodynamics, modeling, and application of different aluminum alloys.

Scientific and Engineering Progress on Aluminum-Based Light-Weight Materials: Research Reports from the German Collaborative Research Center 692

Author:
ISBN: 9783038971962 9783038971979 Year: Pages: 196 DOI: 10.3390/books978-3-03897-197-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Engineering
Added to DOAB on : 2018-09-21 10:25:03
License:

Loading...
Export citation

Choose an application

Abstract

Aluminum-based light-weight materials offer great potential for novel engineering applications, particularly when they are optimized to exhibit high strength and yet provide sufficient reliability. The last decade has thus seen substantial activity in the research fields of high-strength aluminum alloys and aluminum-based composite materials.For twelve years, backed by solid funding from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), scientists of the Collaborative Research Center, “High-strength aluminum-based light-weight materials for safety components” (SFB 692) at TU Chemnitz, Germany, have contributed to this research area. Our research efforts have been focused on three main areas: ultrafine-grained aluminum alloys produced by severe plastic deformation; aluminum matrix composites; and aluminum-based composite materials (including material combinations such as magnesium/aluminum or steel/aluminum and the corresponding joining and forming technologies). The framework of SFB 692 has served as a base for numerous scientific collaborations between scientists in the fields of materials science, design engineering, production engineering, mechanics, and even economics—in Chemnitz, and with many well-established international experts around the world.In this Special Issue, we present recent results on high-strength aluminum-based light-weight materials that also provide a broad overview of research activities in SFB 692 and elsewhere.

Dissimilar Metal Welding

Authors: ---
ISBN: 9783039219544 9783039219551 Year: Pages: 288 DOI: 10.3390/books978-3-03921-955-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The combination of distinct materials is a key issue in modern industry, whereas the driving concept is to design parts with the right material in the right place. In this framework, a great deal of attention is directed towards dissimilar welding and joining technologies. In the automotive sector, for instance, the concept of “tailored blanks”, introduced in the last decade, has further highlighted the necessity to weld dissimilar materials. As far as the aeronautic field is concerned, most structures are built combining very different materials and alloys, in order to match lightweight and structural performance requirements. In this framework, the application of fusion welding techniques, namely, tungsten inert gas or laser welding, is quite challenging due to the difference in physical properties, in particular the melting point, between adjoining materials. On the other hand, solid-state welding methods, such as the friction stir welding as well as linear friction welding processes, have already proved to be capable of manufacturing sound Al-Cu, Al-Ti, Al-SS, and Al-Mg joints, to cite but a few. Recently, promising results have also been obtained using hybrid methods. Considering the novelty of the topic, many relevant issues are still open, and many research groups are continuously publishing valuable results. The aim of this book is to finalize the latest contributions on this topic.

Keywords

dissimilar joints --- friction stir welding --- microstructure --- mechanical properties --- local strength mismatch --- dissimilar metal welded joint --- fracture resistance --- crack growth path --- optimal design --- laser beam welding --- spatial beam oscillation --- dissimilar metals --- aluminum --- copper --- friction stir welding --- aluminum --- copper --- cross-section adjustment --- mechanical properties --- electrical properties --- dissimilar weld --- ageing --- tensile properties --- hardness --- failure mode --- dissimilar metal welding --- Inconel 625 --- AISI 316L --- microstructure --- filler metals --- friction stir spot welding --- friction stir spot brazing --- joining area --- fracture load --- Al/steel dissimilar materials --- friction stir welding --- interface --- intermetallic compounds --- dual-beam laser welding --- steel/Al joint --- side-by-side configuration --- tensile resistance --- EBSD phase mapping --- pulsed Nd:YAG laser beam welding --- interfacial crack initiation --- dissimilar Ti6Al4V/AA6060 lap joint --- phase potential --- laser welding --- pulsed Nd:YAG laser --- DP1000 steel --- 1050 aluminum alloy --- dissimilar materials welding --- steel/aluminum joint --- Ag-Cu-Zn --- Rare earth --- aging treatment --- microstructure --- mechanical properties --- aluminum --- dissimilar --- friction stir welding --- FSW --- hardness --- microstructure --- tensile --- magnetic pulse welding --- dissimilar metal welding --- solid state welding --- welding window --- cloud of particles --- jet --- surface activation --- welding-brazing --- arc assisted laser method --- aluminum-steel butt joint --- mechanical properties --- DeltaSpot welding --- spooling process tape --- aluminum alloy --- dissimilar metal welding --- lobe curve --- electromagnetic pulse welding --- tubular joints --- internal supports --- n/a

Light Weight Alloys: Processing, Properties and Their Applications

Authors: ---
ISBN: 9783039289196 / 9783039289202 Year: Pages: 238 DOI: 10.3390/books978-3-03928-920-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

There is growing interest in light metallic alloys for a wide number of applications owing to their processing efficiency, processability, long service life, and environmental sustainability. Aluminum, magnesium, and titanium alloys are addressed in this Special Issue, however, the predominant role played by aluminum. The collection of papers published here covers a wide range of topics that generally characterize the performance of the alloys after manufacturing by conventional and innovative processing routes.

Keywords

aluminum alloy --- quenching process --- material property --- cooling rate --- plastic strain --- residual stress --- 2024-T4 aluminum alloys --- microarc oxidation --- anode pulse-width --- FEP --- adhesion strength --- wear resistance --- titanium aluminides --- hot compression --- dynamic recrystallization --- microstructure --- Al alloy --- remanufacturing --- hot rolling --- activation energy --- alloy --- 7XXX Al alloy --- spray deposited --- hot deformation behavior --- precipitation --- mechanical alloying --- Al–Si alloy --- mechanical properties --- consolidation --- Ti6Al4V titanium alloy --- resistance spot welding --- mechanical properties --- microstructure --- aluminum alloy --- 7003 alloy --- fatigue properties --- thermomechanical treatment --- fractography --- magnesium alloy --- compressive strength --- hot workability --- processing map --- hot forging --- Al-5Mg wire electrode --- Zr --- wire feedability --- microstructure --- mechanical properties --- commercially pure titanium --- rotary-die equal-channel angular pressing --- cold rolling --- ultra-fine grain --- tensile property --- creep --- hot working --- constitutive equations --- solid solution hardening --- high pressure die casting --- Al-Si-Cu alloys --- iron --- sludge --- intermetallics --- fatigue behavior --- high temperature --- tensile properties --- microstructural changes --- AlSi9Cu3(Fe) --- AlSi11Cu2(Fe) --- AlSi12Cu1(Fe) --- hydroforming --- springback --- FEM simulation --- UNS A92024-T3 --- hardening criteria --- selective laser melting --- AlSi10Mg alloy --- processing temperature --- aging treatment

Thermo-Mechanical Behaviour of Structural Lightweight Alloys

Author:
ISBN: 9783039213870 9783039213887 Year: Pages: 128 DOI: 10.3390/books978-3-03921-388-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

The need to reduce the ecological footprint of water/land/air vehicles in this era of climate change requires pushing the limits regarding the development of lightweight structures and materials. This requires a thorough understanding of their thermomechanical behavior at several stages of the production chain. Moreover, during service, the response of lightweight alloys under the simultaneous influence of mechanical loads and temperature can determine the lifetime and performance of a multitude of structural components. The present Special Issue, comprising eight original research articles, is dedicated to disseminating current efforts around the globe aimed at advancing understanding of the thermomechanical behavior of structural lightweight alloys under processing or service conditions.

Friction Stir Welding and Processing in Alloy Manufacturing

Author:
ISBN: 9783039212071 9783039212088 Year: Pages: 142 DOI: 10.3390/books978-3-03921-208-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Analytical Chemistry
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Friction stir welding (FSW) is considered to be the most significant development in metal joining in decades and, in addition, is a ""green"" technology due to its energy efficiency, environmental friendliness, and versatility. This process offers a number of advantages over conventional joining processes. Furthermore, because welding occurs via the deformation of material at temperatures below the melting temperature, many problems commonly associated with joining of dissimilar alloys can be avoided, and thus, high-quality welds are produced. Due to this fact, FSW has been widely used in different industrial applications where metallurgical characteristics should be retained, such as in the aeronautic, naval, and automotive industries.

Metal Plasticity and Fatigue at High Temperature

Authors: --- ---
ISBN: 9783039287703 / 9783039287710 Year: Pages: 220 DOI: 10.3390/books978-3-03928-771-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue.

Ultrasonic Cavitation Treatment of Metallic Alloys

Authors: ---
ISBN: 9783039281961 9783039281978 Year: Pages: 110 DOI: 10.3390/books978-3-03928-197-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue scrutinizes the use of ultrasonic-cavitation melt treatment in technology of high-quality metallic alloys with improved mechanical properties, and assesses the driving mechanisms of cavitation-induced effects, such as grain refinement, degassing, wetting, and particle distribution. In this context, the research published in this Special Issue considers the interaction between the cavitation field and acoustic streaming with the melt flow and the suspended solid/liquid phases, the characterization and mapping of cavitation activity in a melt volume, and the possibility of achieving high efficiency in processing large melt volumes through technological approaches for the commercial implementation of ultrasonic processing technology.

Processing-Structure-Property Relationships in Metals

Authors: ---
ISBN: 9783039217700 9783039217717 Year: Pages: 240 DOI: 10.3390/books978-3-03921-771-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:39:37
License:

Loading...
Export citation

Choose an application

Abstract

In the industrial manufacturing of metals, the achievement of products featuring desired characteristics always requires the control of process parameters in order to obtain a suitable microstructure. The strict relationship among process parameters, microstructure, and mechanical properties is a matter of interest in different areas, such as foundry, plastic forming, sintering, welding, etc., and regards both well-established and innovative processes. Nowadays, circular economy and sustainable technological development are dominant paradigms and impose an optimized use of resources, a lower energetic impact of industrial processes and new tasks for materials and products. In this frame, this Special Issue covers a broad range of research works and contains research and review papers.

Keywords

titanium composites --- in situ secondary phases --- microstructure --- inductive hot pressing --- intermetallic --- bainite rail --- tempering --- retained austenite --- tensile property --- impact toughness --- cryorolling --- reduction --- ultrafine grain --- secondary recrystallization --- high strength --- microstructure inhomogeneity --- non-monotonic simple shear strains --- shear strain reversal --- severe plastic deformation --- texture inhomogeneity --- tensile properties --- Mg-10Y-6Gd-1.5Zn-0.5Zr --- ultra-fine grain --- aging treatment --- precipitation behavior --- mechanical property --- multimodal --- AZ91 alloy --- equal channel angular pressing --- aging --- high pressure die casting --- aluminum alloy --- prediction model --- process monitoring --- static mechanical behavior --- fracture surface --- microstructure. --- casting --- Al 6061 alloys --- shrinkage --- porosity --- steering knuckles --- Al alloys --- warm working --- mechanical properties --- dental materials --- metal posts --- computer-aided design (CAD) --- image analysis --- mechanical properties --- finite element analysis --- additive manufacturing --- Al alloys --- wear --- cavitation erosion --- SEM --- microstructure --- high speed steel --- nanostructured coatings --- thin films --- FEGSEM --- tribology --- Nb tube --- caliber-rolling --- grain boundaries --- texture --- electron backscatter diffraction --- damping --- aluminum film --- grain boundary --- anelasticity --- thin aluminum sheet --- alloys --- aeronautic applications --- mechanical properties --- corrosion resistance --- EBM --- SEBM --- macro-instrumented indentation test --- property-microstructure-process relationship --- mechanical properties --- indentation hardness --- indentation modulus --- tensile properties --- Ti-6Al-4V alloy --- ?-platelet thickness --- columnar microstructure --- n/a

Listing 1 - 10 of 37 << page
of 4
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (37)


License

CC by-nc-nd (37)


Language

english (29)

eng (8)


Year
From To Submit

2020 (13)

2019 (21)

2018 (2)

2017 (1)