Search results: Found 17

Listing 1 - 10 of 17 << page
of 2
>>
Sort by
Metabolic Interactions Between Bacteria and Phytoplankton

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454952 Year: Pages: 227 DOI: 10.3389/978-2-88945-495-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology --- Oceanography
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

The cycling of energy and elements in aquatic environments is controlled by the interaction of autotrophic and heterotrophic processes. In surface waters of lakes, rivers, and oceans, photosynthetic microalgae and cyanobacteria fix carbon dioxide into organic matter that is then metabolized by heterotrophic bacteria (and perhaps archaea). Nutrients are remineralized by heterotrophic processes and subsequently enable phototrophs to grow. The organisms that comprise these two major ecological guilds are numerous in both numbers and in their genetic diversity, leading to a vast array of physiological and chemical responses to their environment and to each other. Interactions between bacteria and phytoplankton range from obligate to facultative, as well as from mutualistic to parasitic, and can be mediated by cell-to-cell attachment or through the release of chemicals. The contributions to this Research Topic investigate direct or indirect interactions between bacteria and phytoplankton using chemical, physiological, and/or genetic approaches. Topics include nutrient and vitamin acquisition, algal pathogenesis, microbial community structure during algal blooms or in algal aquaculture ponds, cell-cell interactions, chemical exudation, signaling molecules, and nitrogen exchange. These studies span true symbiosis where the interaction is evolutionarily derived, as well as those of indirect interactions such as bacterial incorporation of phytoplankton-produced organic matter and man-made synthetic symbiosis/synthetic mutualism.

Keywords

bacteria --- algae --- algicidal --- mutualism

Autophagy in plants and algae

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194773 Year: Pages: 102 DOI: 10.3389/978-2-88919-477-3 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-03-10 08:14:33
License:

Loading...
Export citation

Choose an application

Abstract

Autophagy (also known as macroautophagy) is an evolutionarily conserved process by which cytoplasmic components are nonselectively enclosed within a double-membrane vesicle known as the autophagosome and delivered to the vacuole for degradation of toxic components and recycling of needed nutrients. This catabolic process is required for the adequate adaptation and response of the cell, and correspondingly the whole organism, to different types of stress including nutrient starvation or oxidative damage. Autophagy has been extensively investigated in yeasts and mammals but the identification of autophagy-related (ATG) genes in plant and algal genomes together with the characterization of autophagy-deficient mutants in plants have revealed that this process is structurally and functionally conserved in photosynthetic eukaryotes. Recent studies have demonstrated that autophagy is active at a basal level under normal growth in plants and is upregulated during senescence and in response to nutrient limitation, oxidative stress, salt and drought conditions and pathogen attack. Autophagy was initially considered as a non-selective pathway, but numerous observations mainly obtained in yeasts revealed that autophagy can also selectively eliminate specific proteins, protein complexes and organelles. Interestingly, several types of selective autophagy appear to be also conserved in plants, and the degradation of protein aggregates through specific adaptors or the delivery of chloroplast material to the vacuole via autophagy has been reported. This research topic aims to gather recent progress on different aspects of autophagy in plants and algae. We welcome all types of articles including original research, methods, opinions and reviews that provide new insights about the autophagy process and its regulation.

The Code Decoded. A user’s guide to the International Code of Nomenclature for algae, fungi, and plants

Author:
ISBN: 9789546429643 Year: Pages: 196 DOI: https://ab.pensoft.net/book/38075/ Language: English
Publisher: Pensoft Publishers
Subject: Botany
Added to DOAB on : 2020-04-21 16:29:58
License: CC-BY-4.0

Loading...
Export citation

Choose an application

Abstract

The purpose of this second edition of The Code Decoded is to serve as a user’s guide to the International Code of Nomenclature for algae, fungi, and plants (“Code”), specifically the Shenzhen Code (Turland & al., 2018).

Advancements in Algal Biofuels Research - Recent Evaluation of Algal Biomass Production and Conversion Methods of into Fuels and High Value Co-products

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451982 Year: Pages: 81 DOI: 10.3389/978-2-88945-198-2 Language: English
Publisher: Frontiers Media SA
Subject: Biotechnology --- General and Civil Engineering
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

Algae biomass has enormous potential to produce fuels and value-added products. Algae-derived biofuels and bioproducts offer great promise in contributing to U.S. energy security and in mitigating the environmental concerns associated with conventional fuels. Algae’s ability to grow in low quality water/wastewater and to accumulate lipids has encouraged scientists to investigate algae as a medium for wastewater treatment and a potential source of fuel and bioproducts. There are growing demands for biomass-based transportation fuels, including biodiesel, bio-oil, biomethane, biohydrogen, and other high-value products (nutraceuticals, proteins, omega-3 etc.). Algae can help address these needs. The topic of algae energy includes the production and characterization of algae cultures, conversion into fuel feedstocks and high value products, and optimization of product isolation and use. In view of the increasing efforts in algae biomass production and conversion into energy and high-value products, the current research topic covers important aspects of algal strain selection, culture systems, inorganic carbon utilization, lipid metabolism and quality, biomass harvesting, extraction of lipids and proteins, and thermochemical conversion of algal feedstocks into biocrude.

Marine Biomolecules

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196616 Year: Pages: 97 DOI: 10.3389/978-2-88919-661-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Chemistry (General) --- General and Civil Engineering --- Biotechnology
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

Oceans include the greatest extremes of pressure, temperature and light, and habitats can range from tropical waters to ocean trenches, several kilometers below sea level at high pressure. With its 70% of the surface of our planet marine ecosystem still remains largely unexplored, understudied and underexploited in comparison with terrestrial ecosystems, organisms and bioprocesses. The biological adaptation of marine organisms to a wide range of environmental conditions in the specific environment (temperature, salinity, tides, pressure, radiation, light, etc.) has made them an enormous reservoir of interesting biological material for both basic research and biotechnological improvements. As a consequence marine ecosystem is valued as a source of enzymes and other biomolecules exhibiting new functions and activities to fulfill human needs. Indeed, in recent years it has been recognised as an untapped source of novel enzymes and metabolites even though, with regard to the assignment of precise biological functions to genes, proteins and enzymes, it is still considered as the least developed. Using metagenomics to recover genetic material directly from environmental samples, this biogenetic diversification can be accessed but despite the contributions from metagenomic technologies the new field requires major improvements. A few words on the complexity of marine environments should be added here. This complexity ranges from symbiotic relationships to biology and chemistry of defence mechanisms and from chemoecology of marine invasions up to the strategies found in prokaryotes to adapt to extreme environments. The interdisciplinary study of this complexity will enable researchers to find an arsenal of enzymes and pathways greatly demanded in biotechnological applications. As far as marine enzymes are concerned they may carry novel chemical and stereochemical properties, thus biocatalytically oriented studies (testing of suitable substrates, appropriate checking of reaction conditions, study of stereochemical asset of catalysis) should be performed to appropriately reveal this “chemical biodiversity” which increases interest for these enzymes. Among other biomolecules, polysaccharides are the most abundant renewable biomaterial found on land and in oceans. Their molecular diversity is very interesting; except polysaccharides used traditionally in food and non-food industries, the structure and the functionality of most of them are unknown and unexplored. Brown seaweeds synthesize unique bioactive polysaccharides: laminarans, alginic acids and fucoidans. A wide range of biological activities (anticoagulant, antitumor, antiviral, anti-inflammation, etc.) have been attributed to fucoidans and their role with respect to structure-activity relationship is still under debate. In this Research Topic, we wish to centralize and review contributions, idea and comments related to the issues above. In particular results of enzymatic bioprospecting in gross marine environment will be acknowledged along with research for structural characterization and biological function of biomolecules such as marine polysaccharides and all kind of research related to the complexity of bioprocesses in marine environments. Inter- and multi-disciplinary approach to this field is favoured in this Research Topic and could greatly be facilitated by the web and open access nature as well.

Harmful Algal Blooms (HABs) and Public Health: Progress and Current Challenges

ISBN: 9783038421559 9783038421566 Year: Pages: 316
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2016-05-20 15:26:51
License:

Loading...
Export citation

Choose an application

Abstract

Over the past decade, coastal and freshwater systems in the U.S. and worldwide have experienced an apparent increase in the frequency and geographic distribution of harmful algal blooms (HABs). These blooms can adversely affect both public health and ecosystem health. Toxin-producing HABs can accumulate in drinking and recreational waters and in foods of aquatic origin such as fish and seafood. Human and animal health risks include exposure to the toxins through eating contaminated food or drinking or swimming in contaminated water. Because of these potential public health risks, several countries and U.S. states have developed monitoring programs and guidelines for drinking and recreational water quality to protect public health. This special issue will present research papers and reviews on various aspects of public health and environmental responses to harmful algal blooms. [...]

Bioconversion Processes

Author:
ISBN: 9783038429456 9783038429463 Year: Pages: VI, 150 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biotechnology --- Biology
Added to DOAB on : 2018-06-22 12:05:03
License:

Loading...
Export citation

Choose an application

Abstract

Compared to conventional chemical technologies and other similar industrial processes, bioprocesses represent a more sustainable and environmentally-friendly alternative for the production of fuels and platform chemicals. In biorefineries, different kinds of feedstocks, such as biomass or lignocellulosic materials in general, can be used and fermented by microorganisms (e.g., bacteria, fungi, algae), after some pretreatment steps, to produce high added-value metabolites. More recently, wastes, wastewaters and also waste gases have been shown to be suitable for resource recovery or for their bioconversion to (bio)fuels (e.g., ethanol, butanol, hexanol, biodiesel, biohydrogen, biogas) or other commercial products (e.g., biopolymers). In this sense, much effort has also been made to bioconvert greenhouse gases, such as CO2, into useful products.The goal of this Special Issue is to publish both recent innovative research data, as well as review papers on the fermentation of different types of substrates to commercial (bio)fuels and (bio)products, mainly focusing on the bioconversion of pollutants in solid, liquid, or gas phases (wastes, wastewaters, waste gases).

Marine Proteins and Peptides

Author:
ISBN: 9783038426462 9783038426479 Year: Pages: 476 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2018-02-08 13:06:14
License:

Loading...
Export citation

Choose an application

Abstract

Marine proteins and peptides have great potential application in developing pharmaceuticals, nutraceuticals, and cosmeceuticals. Proteins and peptides from marine sources are considered to be safe and inexpensive. Protein- and peptide-based drugs have been increasing in recent days to cure various diseases by serving multiple roles, such as antioxidants, anticancer drugs, antimicrobials, and anticoagulants. There are different marine sources (macroalgae, fish, shellfish, and bivalves), which possibly contain specific protein and peptides.

Seaweeds Secondary Metabolites: Successes in and/or Probable Therapeutic Applications

Author:
ISBN: 9783039283002 9783039283019 Year: Pages: 320 DOI: 10.3390/books978-3-03928-301-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Seaweeds are recognized as highly nutritious, and their use in gastronomy is increasing. Their health benefits and their potential to prevent several diseases have also been established. In this Special Issue several health effects are discussed, with more emphasis on their antitumor activity and potential use to treat Alzheimer’s disease. The key bioactive metabolites, from which phlorotannins can be highlighted, are presented, as well as some important in vivo studies. Altogether, the chapters provide in-depth information about the biological activities of seaweed metabolites, contributing to elucidate the health effects of seaweed.

Keywords

Padina pavonica --- osteosarcoma --- apoptosis --- algae --- chemo-preventive agent --- phytol --- fucosterol --- fatty acid --- laurinterol --- Laurencia --- antitumoral --- breast cancer explants --- organotypic culture --- ex vivo --- phlorotannin --- eckmaxol --- high-speed counter-current chromatography --- NMR spectroscopy --- mass spectrometry --- isolation and purification --- Ecklonia maxima --- fucoidan --- age-related macular degeneration --- VEGF --- oxidative stress --- Saccharina latissima --- Fucus vesiculosus --- Fucus distichus subsp. evanescens --- Fucus serratus --- Laminaria digitata --- Symphyocladia latiuscula --- bromophenols --- mushroom tyrosinase --- B16F10 --- melanin --- red seaweed --- bioactives --- extraction --- biorefinery --- seaweed --- gut microbiota --- prebiotics --- dietary fibre --- complex polysaccharides --- polyphenols --- polyunsaturated fatty acids --- carotenoids --- phytochemicals --- Padina pavonica --- marine algae --- osteoporosis --- bone metabolism --- bone health --- nutraceutical --- Bifurcaria bifurcata --- linear diterpenes --- extraction --- identification --- biological activities --- macroalgae --- high value applications --- phlorotannin --- amyloid-? aggregation --- insulin glycation --- dynamic simulation --- kidney --- ischemia-reperfusion injury --- Ecklonia cava --- phlorotannins --- Alzheimer’s disease --- seaweeds --- cholinesterases --- beta-secretase --- beta-amyloid aggregation --- neuroprotection --- K14HPV16 --- genotoxicity assay --- papillomavirus --- cancer --- seaweeds --- hyperpigmentation --- skin aging --- skincare --- photo-protection --- seaweeds --- secondary metabolites --- in vivo studies --- clinical trials --- health effects --- dieckol --- eckol --- fucoxanthin --- kahalalide F

Anti-Photoagaing and Photo-Protective Compounds from Marine Organisms

Authors: ---
ISBN: 9783039280445 9783039280452 Year: Pages: 186 DOI: 10.3390/books978-3-03928-045-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Therapeutics --- Medicine (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue Book ""Anti-Photoagaing and Photo-Protective Compounds from Marine Organisms"" is aimed at collecting literature on the below-mentioned keyword topics, which can significantly increase our basic understanding of marine-derived compounds in cosmeceutical product development and increases the value of marine products at the industrial level.

Listing 1 - 10 of 17 << page
of 2
>>
Sort by
Narrow your search