Search results:
Found 13
Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
This document is a comprehensive survey of the scientific knowledge acquired in late 2012 on the environmental impacts of marine aggregate extraction. The synthesis completes international knowledge (ICES WGEXT, COST Action 638 "MAGGNET") with local investigation in Normandy on two sites of the Eastern English Channel in the framework of the 2003-2011 SIEGMA programme.
Choose an application
Process optimization was conducted for the conversion of the aggragate-building substrate di-rhamnolipid to mono-rhamnolipid by Alpha-L-rhamnosidase from Penicillium decumbens and resulting in: (I) selection of optimal reaction conditions for enzyme activity and stability, (II) modeling of the reaction time course assuming mixed aggregates as a second phase, and (III) high mass diffusion resistances were completely overcome by the use of non-porous magnetic enzyme micro-carriers.
Choose an application
This collection honours the work of the eminent economist Josef Steindl. Steindl's work is illuminated through a critical appraisal of its central constructs with a focus on its relevance to current economic conditions. This collection charts the thinking of one of the leading economic theorists of the twentieth century.
josef --- steindl --- american --- capitalism --- capacity --- utilization --- profit --- margins --- excess --- aggregate
Choose an application
Classically, polymer micelles have been defined as aggregates formed by the self-association of amphiphilic polymers due to the hydrophobic interactions between polymer molecules in water. Practical applications of polymer micelles include as carriers in drug delivery systems, as solubilizers, and as associative thickeners. Polymer micelles that do not fall within the classical definition have recently been reported and reflect important developments in synthesis and analysis. For example, hydrophobic interactions are the classic force driving polymer association, whereas recently, micelles have been formed through interactions such as electrostatics, hydrogen bonds, and coordination bonds. Intermolecular association results in the formation of polymer micelles that are similar to micelles formed from low molecular weight surfactants, whereas unimolecular micelles formed by intramolecular association within a single polymer chain have also been reported, as have stimuli-responsive polymer micelles. It is therefore important to constantly update the information available and our knowledge of polymer micelles. This special issue covers synthesis, characterization, solution properties, association behavior, simulation, and the application of polymer micelles and polymer aggregates. The aim of this issue is to expand our knowledge of polymer micelles by gathering together the latest basic and applied information regarding these supramolecular structures.
Polymer micelle --- Polymer aggregate --- Stimuli-responsive --- Polymer vesicle --- Drug delivery --- Self-organization --- Amphiphilic polymer
Choose an application
This book is the result of a Special Issue published in Applied Sciences, entitled “New Trends in Recycled Aggregate Concrete"". It identifies emerging research areas within the field of recycled aggregate concrete and contributes to the increased use of this eco-efficient material.Its contents are organised in the following sections: Upscaling the use of recycled aggregate concrete in structural design; Large scale applications of recycled aggregate concrete; Long-term behaviour of recycled aggregate concrete; Performance of recycled aggregate concrete in very aggressive environments; Reliability of recycled aggregate concrete structures; Life cycle assessment of recycled aggregate concrete; New applications of recycled aggregate concrete.
reactive power concrete --- shrinkage --- creep --- steel fibre --- model --- compressive strength --- models --- geological nature of aggregates --- quality of aggregates --- concrete --- recycled aggregates --- seismic load --- strain rate --- fiber-reinforced concrete --- dynamic mechanical property --- recycled aggregate quality --- bond strength --- shear behavior --- aggregate interlock mechanism --- size effect --- ready-mixed concrete --- recycled concrete aggregates --- returned concrete --- concrete sludge fines --- soil stabilization --- recycled aggregate --- recycled aggregate concrete --- artificial neural networks --- aggregate characteristic --- input variable --- recycled concrete --- aggregate --- mixture proportioning --- flexural behavior --- recycling --- heavyweight waste glass --- cyclic load --- reinforced concrete member --- recycled aggregate concrete (RAC) --- steel reinforced recycled aggregate concrete (SRRAC) --- elevated temperature --- residual properties --- recycled coarse aggregate concrete --- nylon fiber --- mechanical properties --- permeability --- microstructure --- foam concrete --- cellular concrete --- ceramic foam --- modulus --- crushing --- energy absorbing --- CT --- foam structure --- foam stability --- recycled aggregate --- concrete --- life cycle assessment --- environmental impact --- recycled concrete aggregate --- crumb rubber --- crushed glass --- compressive strength --- tensile splitting strength --- water absorption --- concrete --- aggregates --- fly-ash --- silica fume --- blast-furnace slag --- mechanical properties --- water absorption --- reinforced concrete --- recycled aggregate concrete --- columns --- seismic performance --- numerical analysis --- variable sensitivity --- recycled aggregate --- concrete --- construction waste --- mechanical characteristics --- durable characteristics --- n/a
Choose an application
Developing techniques for assessing various risks and calculating probabilities of ruin and survival are exciting topics for mathematically-inclined academics. For practicing actuaries and financial engineers, the resulting insights have provided enormous opportunities but also created serious challenges to overcome, thus facilitating closer cooperation between industries and academic institutions. In this book, several renown researchers with extensive interdisciplinary research experiences share their thoughts that, in one way or another, contribute to the betterment of practice and theory of decision making under uncertainty. Behavioral, cultural, mathematical, and statistical aspects of risk assessment and modelling have been explored, and have been often illustrated using real and simulated data. Topics range from financial and insurance risks to security-type risks, from one-dimensional to multi- and even infinite-dimensional risks.
aggregate discounted claims --- Markovian arrival process --- partial integro-differential equation --- covariance --- multivariate gamma distribution --- multiplicative background risk model --- aggregate risk --- individual risk model --- collective risk model --- risk measure --- cumulative Parisian ruin --- stochastic orders --- surplus process --- renewal process --- discounted aggregate claims --- copulas --- archimedean copulas --- background risk --- systematic risk --- transfer function --- information processing --- order statistic --- concomitant --- ruin probability --- dual risk model --- constant interest rate --- integral equation --- Laplace transform --- numerical approximation --- maximal tail dependence --- clustering --- financial time series --- weighted cuts --- copula --- national culture --- survival analysis --- hazard model --- rating migrations --- advanced measurement approach --- confidence interval --- Monte Carlo --- operational risk --- value-at-risk --- central limit theorem --- insurance --- max-stable random fields --- rate of spatial diversification --- reinsurance --- risk management --- risk theory --- spatial dependence --- spatial risk measures and corresponding axiomatic approach --- n/a
Choose an application
This Special Issue covers a wide range of areas—including building orientation, service life, use of photocatalytically active structures and PV facades, implications of transportation system, building types (i.e., high rise, multilevel, commercial, residential), life cycle assessment, and structural engineering—that need to be considered in the environmental impact assessment of buildings, and the chapters include case studies across the globe. Consideration of these strategies would help reduce energy and material consumption, environmental emissions, and waste generation associated with all phases of a building’s life cycle. Chapter 1 demonstrates that green star concrete exhibits the same structural properties as conventional concrete in Australia. Chapter 2 showed that the use of TiO2 as a photocatalyst on the surface of construction materials with a suitable stable binding agent, such as aggregates, would enable building walls to absorb NOx from air. This study found that TiO2 has the potential to reduce ambient concentrations of NOx from areas where this pollutant becomes concentrated under solar irradiation. Chapter 3 presents the life cycle assessment of architecturally integrated glass–glass photovoltaics in building facades to find the appropriate material composition for a multicolored PV façade offering improved environmental performance. Chapter 4 shows that urban office buildings lacking appropriate orientation experienced indoor overheating. Chapter 5 details four modeling approaches that were implemented to estimate buildings’ response towards load shedding. Chapter 6 covers the life cycle GHG emissions of high-rise residential housing block to discover opportunities for environmental improvement. Chapter 7 discusses an LCA framework that took into account variation in the service life of buildings associated with the use of different types of materials. Chapter 8 presents a useful data mining algorithm to conduct life cycle asset management in residential developments built on transport systems.
green star concrete --- slag --- recycled aggregate --- wash water --- sustainability --- peak shaving --- demand response --- block of buildings --- thermal model --- TEASER --- greenhouse gases --- residential building --- life cycle assessment --- sustainable-development --- life-cycle social analysis --- public-engagement --- modal-variability --- transit-policy --- work-commute --- travel-satisfaction --- coloured glass --- life cycle assessment --- building integrated photovoltaic --- rain cladding --- LCA --- LCI --- BIPV --- building --- environmental life cycle assessment --- service life --- environmental performance --- environmental remediation --- air pollution --- photocatalytic construction materials --- nitric oxides --- functionalized aggregate --- Multilevel buildings --- indoor overheating --- operational energy --- shallow plan forms
Choose an application
Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.
Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete
Choose an application
Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.
Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete
Choose an application
Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.
Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete
Listing 1 - 10 of 13 | << page >> |
Sort by
|