Search results: Found 10

Listing 1 - 10 of 10
Sort by
Entwicklung miniaturisierter Aktorsysteme basierend auf magnetischen Formgedächtnislegierungen

Author:
Book Series: Schriften des Instituts für Mikrostrukturtechnik am Karlsruher Institut für Technologie / Hrsg.: Institut für Mikrostrukturtechnik ISSN: 18695183 ISBN: 9783731505006 Year: Volume: 33 Pages: XI, 203 p. DOI: 10.5445/KSP/1000053101 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

In this work, the actuation principles of single-crystal Ni-Mn-Ga alloys based on the magnetic shape memory effect (MSM-effect) and the coupling between their magnetic, mechanical and thermal properties, are investigated. The MSM effect is generated by the magnetically induced reorientation of the crystal structure. Thereby, the magnetic strain up to 10 % can be reached.

Optical MEMS

Authors: ---
ISBN: 9783039213030 9783039213047 Year: Pages: 172 DOI: 10.3390/books978-3-03921-304-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays, and fiberoptic communications. The best-known example is Texas Instruments’ digital micromirror devices (DMDs). The development of optical MEMS was impeded seriously by the Telecom Bubble in 2000. Fortunately, DMDs grew their market size even in that economy downturn. Meanwhile, in the last one and half decade, the optical MEMS market has been slowly but steadily recovering. During this time, the major technological change was the shift of thin-film polysilicon microstructures to single-crystal–silicon microsructures. Especially in the last few years, cloud data centers are demanding large-port optical cross connects (OXCs) and autonomous driving looks for miniature LiDAR, and virtual reality/augmented reality (VR/AR) demands tiny optical scanners. This is a new wave of opportunities for optical MEMS. Furthermore, several research institutes around the world have been developing MOEMS devices for extreme applications (very fine tailoring of light beam in terms of phase, intensity, or wavelength) and/or extreme environments (vacuum, cryogenic temperatures) for many years. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on (1) novel design, fabrication, control, and modeling of optical MEMS devices based on all kinds of actuation/sensing mechanisms; and (2) new developments of applying optical MEMS devices of any kind in consumer electronics, optical communications, industry, biology, medicine, agriculture, physics, astronomy, space, or defense.

Keywords

scanning micromirror --- electromagnetic actuator --- angle sensor --- flame retardant 4 (FR4) --- variable optical attenuator (VOA) --- wavelength dependent loss (WDL) --- polarization dependent loss (PDL) --- micro-electro-mechanical systems (MEMS) --- tunable fiber laser --- echelle grating --- DMD chip --- MEMS scanning micromirror --- fringe projection --- laser stripe scanning --- quality map --- large reflection variations --- 3D measurement --- laser stripe width --- vibration noise --- MLSSP --- MEMS scanning mirror --- wavefront sensing --- digital micromirror device --- ocular aberrations --- dual-mode liquid-crystal (LC) device --- infrared Fabry–Perot (FP) filtering --- LC micro-lenses controlled electrically --- spectrometer --- infrared --- digital micromirror device (DMD) --- signal-to-noise ratio (SNR) --- stray light --- programmable spectral filter --- digital micromirror device --- optical switch --- microscanner --- input shaping --- open-loop control --- quasistatic actuation --- residual oscillation --- usable scan range --- higher-order modes --- resonant MEMS scanner --- electrostatic --- parametric resonance --- NIR fluorescence --- intraoperative microscope --- 2D Lissajous --- fluorescence confocal --- metasurface --- metalens --- field of view (FOV) --- achromatic --- Huygens’ metalens --- bio-optical imaging --- optical coherence tomography --- confocal --- two-photon --- spectrometer --- MEMS mirror --- electrothermal bimorph --- Cu/W bimorph --- electrothermal actuation --- reliability --- n/a

Micro- and Nanofluidics for Bionanoparticle Analysis

Authors: ---
ISBN: 9783039215942 9783039215959 Year: Pages: 138 DOI: 10.3390/books978-3-03921-595-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Bionanoparticles such as microorganisms and exosomes are recoganized as important targets for clinical applications, food safety, and environmental monitoring. Other nanoscale biological particles, includeing liposomes, micelles, and functionalized polymeric particles are widely used in nanomedicines. The recent deveopment of microfluidic and nanofluidic technologies has enabled the separation and anslysis of these species in a lab-on-a-chip platform, while there are still many challenges to address before these analytical tools can be adopted in practice. For example, the complex matrices within which these species reside in create a high background for their detection. Their small dimension and often low concentration demand creative strategies to amplify the sensing signal and enhance the detection speed. This Special Issue aims to recruit recent discoveries and developments of micro- and nanofluidic strategies for the processing and analysis of biological nanoparticles. The collection of papers will hopefully bring out more innovative ideas and fundamental insights to overcome the hurdles faced in the separation and detection of bionanoparticles.

Wind Turbine Power Optimization Technology

Authors: ---
ISBN: 9783039289332 / 9783039289349 Year: Pages: 138 DOI: 10.3390/books978-3-03928-934-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Wind turbines are one of the most promising renewable energy technologies, and this motivates fertile research activity about developments in power optimization. This topic covers a wide range of aspects, from the research on aerodynamics and control design to the industrial applications about on-site wind turbine performance control and monitoring. This Special Issue collects seven research papers about several innovative aspects of the multi-faceted topic of wind turbine power optimization technology. The seven research papers deal respectively with the aerodynamic optimization of wind turbine blades through Gurney flaps; optimization of blade design for large offshore wind turbines; control design optimization of large wind turbines through the analysis of the competing objectives of energy yield maximization and fatigue loads minimization; design optimization of a tension leg platform for floating wind turbines; innovative methods for the assessment of wind turbine optimization technologies operating on site; optimization of multiple wake interactions modeling through the introduction of a mixing coefficient in the energy balance method; and optimization of the dynamic stall control of vertical-axis wind turbines through plasma actuators. This Special Issue presents remarkable research activities in the timely subject of wind turbine power optimization technology, covering various aspects. The collection is believed to be beneficial to readers and contribute to the wind power industry.

Mechanism Design for Robotics

Authors: ---
ISBN: 9783039210589 9783039210596 Year: Pages: 212 DOI: 10.3390/books978-3-03921-059-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

MEDER 2018, the IFToMM International Symposium on Mechanism Design for Robotics, was the fourth event in a series that was started in 2010 as a specific conference activity on mechanisms for robots. The aim of the MEDER Symposium is to bring researchers, industry professionals, and students together from a broad range of disciplines dealing with mechanisms for robots, in an intimate, collegial, and stimulating environment. In the 2018 MEDER event, we received significant attention regarding this initiative, as can be seen by the fact that the Proceedings contain contributions by authors from all around the world.The Proceedings of the MEDER 2018 Symposium have been published within the Springer book series on MMS, and the book contains 52 papers that have been selected after review for oral presentation. These papers cover several aspects of the wide field of robotics dealing with mechanism aspects in theory, design, numerical evaluations, and applications.This Special Issue of Robotics (https://www.mdpi.com/journal/robotics/special_issues/MDR) has been obtained as a result of a second review process and selection, but all the papers that have been accepted for MEDER 2018 are of very good quality with interesting contents that are suitable for journal publication, and the selection process has been difficult.

Keywords

hexapod walking robot --- 3-UPU parallel mechanism --- kinematics --- stability --- gait planning --- shape changing --- rolling --- robot --- cylindrical --- elliptical --- velocity control --- economic locomotion --- actuation burden --- inadvertent braking --- humanoid robots --- parallel mechanisms --- cable-driven robots --- robotic legs --- painting robot --- collaborative robot --- image processing --- non-photorealistic rendering --- artistic rendering --- robot wrists --- spherical parallel mechanism --- orientational mechanisms --- computer-aided design --- workspace analysis --- iCub --- shape memory alloy --- compliant mechanism --- SMA actuator --- pneumatic artificial muscle --- McKibben muscle --- haptic glove --- hand exoskeleton --- teleoperation --- force reflection --- human-machine interaction --- robot kinematics --- robot singularity --- singularity analysis --- robot control --- mobile manipulation --- human-robot-interaction --- learning by demonstration --- compliance control --- trajectory planning --- energy efficiency --- redundancy --- robotic cell --- kinematic redundancy --- cable-driven parallel robots --- fail-safe operation --- exercising device --- cobot --- V2SOM --- safety mechanism --- safe physical human–robot interaction --- pHRI --- variable stiffness actuator --- VSA --- collaborative robots --- humanoid robotic hands --- underactuated fingers --- graphical user interface --- grasp stability --- safe physical human–robot interaction (pHRI) --- variable stiffness actuator (VSA) --- collaborative robots --- robot-assisted Doppler sonography --- n/a

Soft Material-Enabled Electronics for Medicine, Healthcare, and Human-Machine Interfaces

Authors: ---
ISBN: 9783039282821 9783039282838 Year: Pages: 244 DOI: 10.3390/books978-3-03928-283-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Soft material-enabled electronics offer distinct advantage, over conventional rigid and bulky devices, for numerous wearable and implantable applications. Soft materials allow for seamless integration with skin and tissues due to enhanced mechanical flexibility and stretchability. Wearable devices, such as sensors, offer continuous, real-time monitoring of biosignals and movements, which can be applied in rehabilitation and diagnostics, among other applications. Soft implantable electronics offer similar functionalities, but with improved compatibility with human tissues. Biodegradable soft implantable electronics are also being developed for transient monitoring, such as in the weeks following surgery. To further advance soft electronics, materials, integration strategies, and fabrication techniques are being developed. This paper reviews recent progress in these areas, toward the development of soft material-enabled electronics for medicine, healthcare, and human-machine interfaces.

Keywords

soft materials --- flexible hybrid electronics --- wearable electronics --- stretchable electronics --- medicine --- healthcare --- human-machine interfaces --- point-of-care testing --- soft material-based channel --- PDMS optical filter --- smartphone-based biosensor --- chromogenic biochemical assay --- naked-eye detection --- implantable materials --- low-profile bioelectronics --- micro/nanofabrication --- medical devices --- biodegradable materials --- miniaturization --- bioresorbable electronics --- printing electronics techniques --- conductive inks --- flexible electronics --- carbon-based nano-materials --- bio-integrated electronics --- hardening sponge --- MR sponge --- 6 degrees-of-freedom (6-DOF) MR haptic master --- RMIS (robot-assisted minimally invasive surgery) --- implantable devices --- optical waveguides --- optical fibers --- biocompatible --- biodegradable --- electroactive hydrogel --- polyvinyl alcohol --- cellulose nanocrystals --- freeze–thaw method --- actuation --- biodegradable electronics --- transient electronics --- soft biomedical electronics --- biodegradable materials --- silver nanowire --- graphene oxide --- polymer-dispersed liquid crystal --- smart window --- hybrid transparent conductive electrode --- conductive textile --- capacitive pressure sensor --- gait --- monitoring --- phase coordination index --- stretchable --- polydimethylsiloxane --- liquid-metal --- capacitor --- dysphagia --- swallowing --- tongue --- nitinol --- superelastic --- prosthesis --- soft materials --- wearable electronics --- implantable electronics --- biodegradable --- medical devices --- diagnostics --- health monitoring --- human-machine interfaces

MEMS Sensors and Resonators

Author:
ISBN: 9783039288656 / 9783039288663 Year: Pages: 164 DOI: 10.3390/books978-3-03928-866-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Microelectromechanical systems (MEMS) have had a profound impact on a wide range of applications. The degree of miniaturization made possible by MEMS technology has significantly improved the functionalities of many systems, and the performance of MEMS has steadily improved as its uses augment. Notably, MEMS sensors have been prevalent in motion sensing applications for decades, and the sensing mechanisms leveraged by MEMS have been continuously extended to applications spanning the detection of gases, magnetic fields, electromagnetic radiation, and more. In parallel, MEMS resonators have become an emerging field of MEMS and affected subfields such as electronic timing and filtering, and energy harvesting. They have, in addition, enabled a wide range of resonant sensors. For many years now, MEMS have been the basis of various industrial successes, often building on novel academic research. Accordingly, this Special Issue explores many research innovations in MEMS sensors and resonators, from biomedical applications to energy harvesting, gas sensing, resonant sensing, and timing.

Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS)

Authors: ---
ISBN: 9783039213757 9783039213764 Year: Pages: 344 DOI: 10.3390/books978-3-03921-376-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book contains the latest research on machine learning and embedded computing in advanced driver assistance systems (ADAS). It encompasses research in detection, tracking, LiDAR

Keywords

Vehicle-to-X communications --- Intelligent Transport Systems --- VANET --- DSRC --- Geobroadcast --- multi-sensor --- fusion --- deep learning --- LiDAR --- camera --- ADAS --- object tracking --- kernel based MIL algorithm --- Gaussian kernel --- adaptive classifier updating --- perception in challenging conditions --- obstacle detection and classification --- dynamic path-planning algorithms --- joystick --- two-wheeled --- terrestrial vehicle --- path planning --- infinity norm --- p-norm --- kinematic control --- navigation --- actuation systems --- maneuver algorithm --- automated driving --- cooperative systems --- communications --- interface --- automated-manual transition --- driver monitoring --- visual tracking --- discriminative correlation filter bank --- occlusion --- sub-region --- global region --- autonomous vehicles --- driving decision-making model --- the emergency situations --- red light-running behaviors --- ethical and legal factors --- T-S fuzzy neural network --- road lane detection --- map generation --- driving assistance --- autonomous driving --- real-time object detection --- autonomous driving assistance system --- urban object detector --- convolutional neural networks --- machine vision --- biological vision --- deep learning --- convolutional neural network --- Gabor convolution kernel --- recurrent neural network --- enhanced learning --- autonomous vehicle --- crash injury severity prediction --- support vector machine model --- emergency decisions --- relative speed --- total vehicle mass of the front vehicle --- perception in challenging conditions --- obstacle detection and classification --- dynamic path-planning algorithms --- drowsiness detection --- smart band --- electrocardiogram (ECG) --- photoplethysmogram (PPG) --- recurrence plot (RP) --- convolutional neural network (CNN) --- squeeze-and-excitation --- residual learning --- depthwise separable convolution --- blind spot detection --- machine learning --- neural networks --- predictive --- vehicle dynamics --- electric vehicles --- FPGA --- GPU --- parallel architectures --- optimization --- panoramic image dataset --- road scene --- object detection --- deep learning --- convolutional neural network --- driverless --- autopilot --- deep leaning --- object detection --- generative adversarial nets --- image inpainting --- n/a

Gas Flows in Microsystems

Authors: ---
ISBN: 9783039215423 9783039215430 Year: Pages: 220 DOI: 10.3390/books978-3-03921-543-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The last two decades have witnessed a rapid development of microelectromechanical systems (MEMS) involving gas microflows in various technical fields. Gas microflows can, for example, be observed in microheat exchangers designed for chemical applications or for cooling of electronic components, in fluidic microactuators developed for active flow control purposes, in micronozzles used for the micropropulsion of nano and picosats, in microgas chromatographs, analyzers or separators, in vacuum generators and in Knudsen micropumps, as well as in some organs-on-a-chip, such as artificial lungs. These flows are rarefied due to the small MEMS dimensions, and the rarefaction can be increased by low-pressure conditions. The flows relate to the slip flow, transition or free molecular regimes and can involve monatomic or polyatomic gases and gas mixtures. Hydrodynamics and heat and mass transfer are strongly impacted by rarefaction effects, and temperature-driven microflows offer new opportunities for designing original MEMS for gas pumping or separation. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel theoretical and numerical models or data, as well as on new experimental results and technics, for improving knowledge on heat and mass transfer in gas microflows. Papers dealing with the development of original gas MEMS are also welcome.

Keywords

pressure drop --- microchannels --- heat sinks --- slip flow --- electronic cooling --- Knudsen pump --- thermally induced flow --- gas mixtures --- direct simulation Monte Carlo (DSMC) --- microfluidic --- rarefied gas flows --- micro-scale flows --- Knudsen layer --- computational fluid dynamics (CFD) --- OpenFOAM --- Micro-Electro-Mechanical Systems (MEMS) --- Nano-Electro-Mechanical Systems (NEMS) --- backward facing step --- gaseous rarefaction effects --- fractal surface topography --- modified Reynolds equation --- aerodynamic effect --- bearing characteristics --- underexpansion --- Fanno flow --- flow choking --- compressibility --- binary gas mixing --- micro-mixer --- DSMC --- splitter --- mixing length --- control mixture composition --- preconcentrator --- microfluidics --- miniaturized gas chromatograph --- BTEX --- PID detector --- ultraviolet light-emitting diode (UV LED) --- spectrophotometry --- UV absorption --- gas sensors --- Benzene, toluene, ethylbenzene and xylene (BTEX) --- toluene --- hollow core waveguides --- capillary tubes --- gas mixing --- pulsed flow --- modular micromixer --- multi-stage micromixer --- modelling --- photoionization detector --- microfluidics --- microfabrication --- volatile organic compound (VOC) detection --- toluene --- supersonic microjets --- Pitot tube --- Knudsen pump --- thermal transpiration --- vacuum micropump --- rarefied gas flow --- kinetic theory --- microfabrication --- photolithography --- microfluidics --- resonant micro-electromechanical-systems (MEMS) --- micro-mirrors --- out-of-plane comb actuation --- fluid damping --- analytical solution --- FE analysis --- miniaturization --- gas flows in micro scale --- measurement and control --- integrated micro sensors --- advanced measurement technologies --- n/a

Microscale Surface Tension and Its Applications

Authors: ---
ISBN: 9783039215645 9783039215652 Year: Pages: 240 DOI: 10.3390/books978-3-03921-565-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Building on advances in miniaturization and soft matter, surface tension effects are a major key to the development of soft/fluidic microrobotics. Benefiting from scaling laws, surface tension and capillary effects can enable sensing, actuation, adhesion, confinement, compliance, and other structural and functional properties necessary in micro- and nanosystems. Various applications are under development: microfluidic and lab-on-chip devices, soft gripping and manipulation of particles, colloidal and interfacial assemblies, fluidic/droplet mechatronics. The capillary action is ubiquitous in drops, bubbles and menisci, opening a broad spectrum of technological solutions and scientific investigations. Identified grand challenges to the establishment of fluidic microrobotics include mastering the dynamics of capillary effects, controlling the hysteresis arising from wetting and evaporation, improving the dispensing and handling of tiny droplets, and developing a mechatronic approach for the control and programming of surface tension effects. In this Special Issue of Micromachines, we invite contributions covering all aspects of microscale engineering relying on surface tension. Particularly, we welcome contributions on fundamentals or applications related to:Drop-botics: fluidic or surface tension-based micro/nanorobotics: capillary manipulation, gripping, and actuation, sensing, folding, propulsion and bio-inspired solutions; Control of surface tension effects: surface tension gradients, active surfactants, thermocapillarity, electrowetting, elastocapillarity; Handling of droplets, bubbles and liquid bridges: dispensing, confinement, displacement, stretching, rupture, evaporation; Capillary forces: modelling, measurement, simulation; Interfacial engineering: smart liquids, surface treatments; Interfacial fluidic and capillary assembly of colloids and devices; Biological applications of surface tension, including lab-on-chip and organ-on-chip systems. We expect novel as well as review contributions on all aspects of surface tension-based micro/nanoengineering. In line with Micromachines' policy, we also invite research proposals that introduce ideas for new applications, devices, or technologies.

Keywords

mist capillary self-alignment --- laser die transfer --- hydrophilic/superhydrophobic patterned surfaces --- microasssembly --- droplet transport --- microfluidics --- vibrations --- contact line oscillation --- asymmetric surfaces --- anisotropic ratchet conveyor --- surface tension --- capillary --- bearing --- wetting --- computational fluid dynamics --- droplet manipulation --- lab-on-a-chip --- microfluidics --- non-invasive control --- photochemical reaction --- photoresponsible surfactant --- surface tension --- two-phase flow --- wettability --- electrowetting --- actuation --- capillary pressure --- lab-on-a-chip --- Nasturtium leaf --- smart superhydrophobic surface --- hot drop --- condensation --- microtexture melting --- self-lubricating slippery surface --- wettability gradient --- electrosurgical scalpels --- anti-sticking --- soft tissue --- continuous-flow reactor --- mixing --- solutal Marangoni effect --- relaxation oscillations --- super-hydrophobic --- durable --- adhesion --- corrosive resistance --- droplet --- vibrations --- transport --- microfluidics --- self-cleaning surface --- superhydrophobic --- superhydrophilic --- superomniphobic --- microfluidics --- electrodynamic screen --- gecko setae --- micropipette-technique --- air-water surface --- oil-water interface --- soluble surfactant --- insoluble lipids --- “black lipid films” --- “droplet-interface-bilayers” --- equilibrium --- dynamic --- adsorption --- gas-microbubbles --- oil-microdroplets --- lung-surfactants --- nanoprecipitation --- microfluidics --- capillary gripper --- pick and place --- micromanufacturing --- two-photon polymerization --- stereolithography --- polydimethylsiloxane (PDMS) replication --- rigid gas permeable contact lenses --- wettability --- hydrophilic --- hydrophobic --- 355 nm UV laser --- surface treatment --- microstructure --- contact angle --- droplets --- liquid bridge --- microfabrication --- micromanipulation --- pick-and-place --- soft robotics --- surface tension --- wetting

Listing 1 - 10 of 10
Sort by
Narrow your search