Search results: Found 3

Listing 1 - 3 of 3
Sort by
Mechanical Signaling in Plants: From Perception to Consequences for Growth and Morphogenesis (Thigmomorphogenesis) and Ecological Significance

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450749 Year: Pages: 93 DOI: 10.3389/978-2-88945-074-9 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

During the 1970s, renewed interest in plant mechanical signaling led to the discovery that plants subjected to mechanical stimulation develop shorter and thicker axes than undisturbed plants, a syndrome called thigmomorphogenesis. Currently, mechanosensing is being intensively studied because of its involvement in many physiological processes in plants and particularly in the control of plant morphogenesis. From an ecological point of view, the shaping of plant architecture has to be precisely organized in space to ensure light capture as well as mechanical stability. In natural environments terrestrial plants are subjected to mechanical stimulation mainly due to wind, but also due to precipitation, while aquatic and marine plants are subjected to current and wave energy. Plants acclimate to mechanically challenging environments by sensing mechanical stimulations and modifying their growth in length and diameter and their tissue properties to reduce potential for buckling or breakage. From a morphogenetic point of view, both external and internal mechanical cues play an important role in the control of cell division and meristem development likely by modulating microtubule orientation. How mechanical stimulations are being sensed by plants is an area of intense research. Different types of mechanosensors have been discovered or proposed, including ion channels gated by membrane tension (stretch activation) and plasma membrane receptor-like kinases that monitor the cell wall deformations. Electrophysiologists have measured the conductances of some stretch-activated channels and have showed that SAC of different structures can exhibit different conductances. The role of these differences in conductance has not yet been established. Once a mechanical stimulus has been perceived, it must be converted into a biological signal that can lead to variations of plant phenotype. Calcium has been shown to function as an early second messenger, tightly linked with changes in cytosolic and apoplastic pH. Transcriptional analyses of the effect of mechanical stimulation have revealed a considerable number of differentially expressed genes, some of which appear to be specific to mechanical signal transduction. These genes can thus serve as markers of mechanosensing, for example, in studies attempting to define signalling threshold, or variations of mechanosensitivity (accommodation). Quantitative biomechanical studies have lead to a model of mechanoperception which links mechanical state and plant responses, and provides an integrative tool to study the regulation of mechanosensing. This model includes parameters (sensitivity and threshold) that can be estimated experimentally. It has also been shown that plants are desensitized when exposed to multiple mechanical signals as a function of their mechanical history. Finally, mechanosensing is also involved in osmoregulation or cell expansion. The links between these different processes involving mechanical signalling need further investigation. This frontier research topic provides an overview of the different aspects of mechanical signaling in plants, spanning perception, effects on plant growth and morphogenesis, and broad ecological significance.During the 1970s, renewed interest in plant mechanical signaling led to the discovery that plants subjected to mechanical stimulation develop shorter and thicker axes than undisturbed plants, a syndrome called thigmomorphogenesis. Currently, mechanosensing is being intensively studied because of its involvement in many physiological processes in plants and particularly in the control of plant morphogenesis. From an ecological point of view, the shaping of plant architecture has to be precisely organized in space to ensure light capture as well as mechanical stability. In natural environments terrestrial plants are subjected to mechanical stimulation mainly due to wind, but also due to precipitation, while aquatic and marine plants are subjected to current and wave energy. Plants acclimate to mechanically challenging environments by sensing mechanical stimulations and modifying their growth in length and diameter and their tissue properties to reduce potential for buckling or breakage. From a morphogenetic point of view, both external and internal mechanical cues play an important role in the control of cell division and meristem development likely by modulating microtubule orientation. How mechanical stimulations are being sensed by plants is an area of intense research. Different types of mechanosensors have been discovered or proposed, including ion channels gated by membrane tension (stretch activation) and plasma membrane receptor-like kinases that monitor the cell wall deformations. Electrophysiologists have measured the conductances of some stretch-activated channels and have showed that SAC of different structures can exhibit different conductances. The role of these differences in conductance has not yet been established. Once a mechanical stimulus has been perceived, it must be converted into a biological signal that can lead to variations of plant phenotype. Calcium has been shown to function as an early second messenger, tightly linked with changes in cytosolic and apoplastic pH. Transcriptional analyses of the effect of mechanical stimulation have revealed a considerable number of differentially expressed genes, some of which appear to be specific to mechanical signal transduction. These genes can thus serve as markers of mechanosensing, for example, in studies attempting to define signalling threshold, or variations of mechanosensitivity (accommodation). Quantitative biomechanical studies have lead to a model of mechanoperception which links mechanical state and plant responses, and provides an integrative tool to study the regulation of mechanosensing. This model includes parameters (sensitivity and threshold) that can be estimated experimentally. It has also been shown that plants are desensitized when exposed to multiple mechanical signals as a function of their mechanical history. Finally, mechanosensing is also involved in osmoregulation or cell expansion. The links between these different processes involving mechanical signalling need further investigation. This frontier research topic provides an overview of the different aspects of mechanical signaling in plants, spanning perception, effects on plant growth and morphogenesis, and broad ecological significance.

Plants' Responses to Novel Environmental Pressures

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454020 Year: Pages: 351 DOI: 10.3389/978-2-88945-402-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Plants have been exposed to multiple environmental stressors on long-term (seasonal) and short-term (daily) basis since their appearance on land. However, the frequency and the intensity of stress events have increased much during the last three decades because of climate change. Plants have developed, however, a multiplicity of modular and highly integrated strategies to cope with challenges imposed by novel, usually harsher environments. These strategies include migration, acclimation and adaptation. Twelve articles in this research topic exactly focus on the relative significance of these response mechanisms for the successful acclimation of plants to a wide range of novel environmental pressures. Four articles , additionally, explore how plants respond to severe stress conditions resulting from the concurrent action of multiple stressors. Ten articles mostly examine how morpho-anatomical, physiological and biochemical-related traits integrate when plants suffer from ‘novel’ threats, such as solid, gaseous, and electromagnetic pollutants. Suitable physiological indicators for developing conservation strategies are described in the last two works. This research topic highlights that bottom-up, as well as, top-down approaches will be necessary to develop in near future in the study of plants´ responses to environmental pressures.

Technological Eco-Innovations for the Quality Control and the Decontamination of Polluted Waters and Soils

Authors: ---
ISBN: 9783039284641 9783039284658 Year: Pages: 226 DOI: 10.3390/books978-3-03928-465-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Environmental Sciences --- Environmental Technology
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The Special Issue “Technological Eco-Innovations for the Quality Control and the Decontamination of Polluted Waters and Soils” deals with the most recent research activities carried out at lab and field scale on eco-sustainable tools for the remediation of contaminated environmental substrates. It is particularly devoted to highlight the relevance of biological organisms (plants, microbes, algae) to assess the chemical contamination in water and soil and to remediate such matrices from the pollution caused by the human activities. Therefore, bioremediation is a primary focus of most of the articles published within the present Special Issue. Bioremediation is a promising environmentally friendly technology to deal with the chemical pollution in different ecosystem compartments and its integration with the traditional approaches might represent a

Keywords

chlorophyll fluorescence --- industrial crop --- metal tolerance --- phytomanagement --- phytoremediation --- soil pollution --- coal --- soil --- water --- bioremediation --- Ralstonia sp. --- sulfur --- synthetic zeolite --- removal --- 2,4-D --- MCPA --- plant secondary metabolites --- ferulic acid --- syringic acid --- biodegradation --- ecotoxicity --- bioremediation --- biostimulation --- diesel oil --- indigenous microorganisms --- kinetics --- dielectric permittivity --- acclimation --- Brassica napus --- salt stress --- chlorophyll fluorescence --- photosynthesis --- anti-oxidant enzymes --- polyamines --- proline --- phytoremediation --- water pollution --- DDT --- TNT --- heavy metals --- cesium ions --- Tagetes patula --- Festuca arundinacea --- bottom urban sediment --- phytoremediation --- plant growth promoting bacteria --- oxidative stress --- plant stress reactions --- phytoremediation --- heavy metals --- energy crops --- pollution --- water contamination --- chlorophyll fluorescence --- mining wastes --- iron and manganese minerals --- water filtration --- arsenic adsorption --- geostatistical analysis --- geological heterogeneity --- dissolved organic carbon --- autochthonous microbial community --- urban sediments --- PCDDs/PCDFs --- rhizobacterial inoculants --- bioremediation --- phytoremediation --- natural-based remediation strategies --- Monviso clone --- plant physiology --- antioxidant defence --- soil microbial communities --- microscope --- bacterial contamination --- water contamination --- artificial intelligence

Listing 1 - 3 of 3
Sort by
Narrow your search