Search results: Found 3

Listing 1 - 3 of 3
Sort by
Aquaporins: Dynamic Role and Regulation

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452897 Year: Pages: 183 DOI: 10.3389/978-2-88945-289-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany --- Physiology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Aquaporins (AQPs), a class of integral membrane proteins, form channels facilitating movement of water and many other solutes. In solute transport systems of all living organisms including plants, animals and fungi, AQPs play a vital role. Plants contain a much higher number of AQP genes compared to animals, the likely consequence of genome duplication events and higher ploidy levels. As a result of duplication and subsequent diversification, plant AQPs have evolved several subfamilies with very diverse functions. Plant AQPs are highly selective for specific solutes because of their unique structural features. For instance, ar/R selectivity filters and NPA domains have been found to be key elements in governing solute permeability through the AQP channels. Combination of conserved motifs and specific amino acids influencing pore morphology appears to regulate the permeability of specific solutes such as water, urea, CO2, H2O2, boric acid, silicic acid and many more. The discovery of novel AQPs has been accelerated over the last few years with the increasing availability of genomic and transcriptomic data. The expanding number of well characterised AQPs provides opportunities to understand factors influencing water transport, nutritional uptake, and elemental balance. Homology-based search tools and phylogenetic analyses offer efficient strategies for AQP identification. Subsequent characterization can be based on different approaches involving proteomics, genomics, and transcriptomic tools. The combination of these technological advances make it possible to efficiently study the inter-dependency of AQPs, regulation through phosphorylation and reversible phosphorylation, networking with other transporters, structural features, pH gating systems, trafficking and degradation. Several studies have supported the role of AQPs in differential phenotypic responses to abiotic and biotic stress in plants. Crop improvement programs aiming for the development of cultivars with higher tolerance against stresses like drought, flooding, salinity and many biotic diseases, can explore and exploit the finely tuned AQP-regulated transport system. For instance, a promising approach in crop breeding programs is the utilization of genetic variation in AQPs for the development of stress tolerant cultivars. Similarly, transgenic and mutagenesis approaches provide an opportunity to better understand the AQP transport system with subsequent applications for the development of climate-smart drought-tolerant cultivars. The contributions to this Frontiers in Plant Science Research Topic have highlighted the evolution and phylogenetic distribution of AQPs in several plant species. Numerous aspects of regulation that seek to explain AQP-mediated transport system have been addressed. These contributions will help to improve our understanding of AQPs and their role in important physiological aspects and will bring AQP research closer to practical applications.

Salinity Tolerance in Plants

Author:
ISBN: 9783039210268 9783039210275 Year: Pages: 422 DOI: 10.3390/books978-3-03921-027-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-06-26 10:09:00
License:

Loading...
Export citation

Choose an application

Abstract

Salt stress is one of the most damaging abiotic stresses because most crop plants are susceptible to salinity to different degrees. According to the FAO, about 800 million Has of land are affected by salinity worldwide. Unfortunately, this situation will worsen in the context of climate change, where there will be an overall increase in temperature and a decrease in average annual rainfall worldwide. This Special Issue presents different research works and reviews on the response of plants to salinity, focused from different points of view: physiological, biochemical, and molecular levels. Although an important part of the studies on the response to salinity have been carried out with Arabidopsis plants, the use of other species with agronomic interest is also notable, including woody plants. Most of the conducted studies in this Special Issue were focused on the identification and characterization of candidate genes for salt tolerance in higher plants. This identification would provide valuable information about the molecular and genetic mechanisms involved in the salt tolerance response, and it also supplies important resources to breeding programs for salt tolerance in plants.

Keywords

Arabidopsis --- Brassica napus --- ion homeostasis --- melatonin --- NaCl stress --- nitric oxide --- redox homeostasis --- Chlamydomonas reinhardtii --- bZIP transcription factors --- salt stress --- transcriptional regulation --- photosynthesis --- lipid accumulation --- Apocyni Veneti Folium --- salt stress --- multiple bioactive constituents --- physiological changes --- multivariate statistical analysis --- banana (Musa acuminata L.) --- ROP --- genome-wide identification --- abiotic stress --- salt stress --- MaROP5g --- rice --- genome-wide association study --- salt stress --- germination --- natural variation --- Chlamydomonas reinhardtii --- salt stress --- transcriptome analysis --- impairment of photosynthesis --- underpinnings of salt stress responses --- chlorophyll fluorescence --- J8-1 plum line --- mandelonitrile --- Prunus domestica --- redox signalling --- salicylic acid --- salt-stress --- soluble nutrients --- Arabidopsis thaliana --- VOZ --- transcription factor --- salt stress --- transcriptional activator --- chlorophyll fluorescence --- lipid peroxidation --- Na+ --- photosynthesis --- photosystem --- RNA binding protein --- nucleolin --- salt stress --- photosynthesis --- light saturation point --- booting stage --- transcriptome --- grapevine --- salt stress --- ROS detoxification --- phytohormone --- transcription factors --- Arabidopsis --- CDPK --- ion homeostasis --- NMT --- ROS --- salt stress --- antioxidant enzymes --- Arabidopsis thaliana --- ascorbate cycle --- hydrogen peroxide --- reactive oxygen species --- salinity --- SnRK2 --- RNA-seq --- DEUs --- flax --- NaCl stress --- EST-SSR --- Salt stress --- Oryza sativa --- proteomics --- iTRAQ quantification --- cell membrane injury --- root activity --- antioxidant systems --- ion homeostasis --- melatonin --- salt stress --- signal pathway --- SsMAX2 --- Sapium sebiferum --- drought, osmotic stress --- salt stress --- redox homeostasis --- strigolactones --- ABA --- TGase --- photosynthesis --- salt stress --- polyamines --- cucumber --- abiotic stresses --- high salinity --- HKT1 --- halophytes --- glycophytes --- poplars (Populus) --- salt tolerance --- molecular mechanisms --- SOS --- ROS --- Capsicum annuum L. --- CaDHN5 --- salt stress --- osmotic stress --- dehydrin --- Gossypium arboretum --- salt tolerance --- single nucleotide polymorphisms --- association mapping. --- n/a

Jasmonic Acid Pathway in Plants

Author:
ISBN: 9783039284887 / 9783039284894 Year: Pages: 346 DOI: 10.3390/books978-3-03928-489-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Plant Sciences
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The plant hormone jasmonic acid (JA) and its derivative, an amino acid conjugate of JA (jasmonoyl isoleucine, JA-Ile), are signaling compounds involved in the regulation of defense and development in plants. The number of articles studying on JA has dramatically increased since the 1990s. JA is recognized as a stress hormone that regulates the plant response to biotic stresses such as herbivore and pathogen attacks, as well as abiotic stresses such as wounding and ultraviolet radiation. Recent studies have remarkably progressed the understanding of the importance of JA in the life cycle of plants. JA is directly involved in many physiological processes, including stamen growth, senescence, and root growth. JA regulates production of various metabolites such as phytoalexins and terpenoids. Many regulatory proteins involved in JA signaling have been identified by screening for Arabidopsis mutants. However, much more remains to be learned about JA signaling in other plant species. This Special Issue, “Jasmonic Acid Pathway in Plants”, contains 5 review and 15 research articles published by field experts. These articles will help with understanding the crucial roles of JA in its response to the several environmental stresses and development in plants.

Keywords

albino --- aroma --- Camellia sinensis --- chloroplast --- jasmonic acid --- light-sensitive --- stress --- tea --- volatile --- Panax ginseng --- gene expression --- ginsenoside --- methyl jasmonate --- MYB transcription factor --- dammarenediol synthase --- jasmonic acid --- signaling pathway --- environmental response --- biological function --- MeJA --- priming --- rice --- proteomics --- ROS --- chlorophyll fluorescence imaging --- MAP kinase --- jasmonate --- rice bacterial blight --- salicylic acid --- grain development --- Prunus avium --- Tuscan varieties --- jasmonic acid --- lipoxygenase --- bioinformatics --- gene expression --- heterotrimeric G proteins --- AtRGS1 --- jasmonates --- endocytosis --- diffusion dynamics --- Chinese flowering cabbage --- leaf senescence --- JA --- transcriptional activation --- adventitious rooting --- auxin --- ectopic metaxylem --- ectopic protoxylem --- ethylene --- hypocotyl --- jasmonates --- nitric oxide --- xylogenesis --- transcriptional regulators --- plant development --- jasmonic acid signaling --- gene expression --- Jasmonate-ZIM domain --- JAZ repressors --- Jas domain --- TIFY --- degron --- phylogenetic analysis --- ancestral sequences --- circadian clock --- jasmonic acid --- crosstalk --- jasmonic acid --- fatty acid desaturase --- multiseeded --- msd --- grain number --- MutMap --- sorghum --- Ralstonia solanacearum --- type III effector --- jasmonic acid --- salicylic acid --- Nicotiana plants --- PatJAZ6 --- jasmonic acid (JA) signaling pathway --- Pogostemon cablin --- patchouli alcohol --- biosynthesis --- jasmonate --- salt response --- Zea mays --- ROS --- proline --- ABA biosynthesis --- jasmonic acid --- crosstalk --- gibberellic acid --- cytokinin --- auxin --- jasmonic acid --- opr3 --- stress defense --- quantitative proteomics --- abiotic stresses --- jasmonates --- JA-Ile --- JAZ repressors --- transcription factor --- signaling --- antioxidant enzyme activity --- elicitor --- methyl jasmonate --- secondary metabolite --- signal molecules --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search