Search results: Found 15

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Mechanical Behavior of High-Strength Low-Alloy Steels

Authors: ---
ISBN: 9783038972044 9783038972051 Year: Pages: 218 DOI: 10.3390/books978-3-03897-205-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Materials
Added to DOAB on : 2018-10-12 09:17:06
License:

Loading...
Export citation

Choose an application

Abstract

High-strength low-alloy steels are designed to provide specific desirable combinations of properties, such as strength, toughness, formability, weldability, and corrosion resistance. These features make them ideal for critical applications under severe service conditions and in aggressive environments, namely rail and road vehicles, passenger car components, construction machinery, industrial equipment, offshore structures, gas pipelines, and bridges, among others. This Special Issue aims to address the mechanical behavior of high-strength low-alloy steels from different perspectives, namely in terms of mechanical deformation, damage, and failure. It gathers scientific contributions from authors working in various fields, for instance processing techniques, the modeling of the mechanical behavior, the characterization of material microstructure, the influence of environmental parameters, temperature dependence, as well as advanced applications.

Alloy Steels

Author:
ISBN: 9783038428831 9783038428848 Year: Pages: X, 320 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mining and Metallurgy --- General and Civil Engineering
Added to DOAB on : 2018-05-04 14:03:05
License:

Loading...
Export citation

Choose an application

Abstract

Alloy steels play a pivotal role in modern society. Their continued development improves the human condition for everyone on earth. Their broad use has resulted in a wide variety of continuing challenges to address economic, manufacturing, and industrial issues. This book contains twenty-three papers covering a wide cross-section of alloy steels and technical problems. Readers interested in solving current manufacturing and application problems will find this issue helpful. The papers contained within cover a wide range of topics by a broad set of authors from across the globe. There are papers covering structure–property relations on various alloys. Other papers discuss the proper processing of alloy steels through the welding, electroslag remelting, and rolling processes. A significant number of the papers cover optimizing the heat treatment of traditional alloys as well as new alloys. There are papers that concentrate on providing real-world performance data on alloy steels, an important but under-studied topic. Of particular interest is a review on the welding of austenitic and duplex stainless steels that gives neophytes and experienced researchers an excellent introduction to the state-of-the-art. This collection of work should be valuable to anyone interested in alloy steels.

Keywords

Steels --- Alloy --- Welding --- Rolling --- Corrosion --- Stainless Steel --- Casting

Untersuchung und Modellierung des viskoplastischen Verformungsverhaltens oxidpartikelverstärkter Stähle

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie ISSN: 21929963 ISBN: 9783731506744 Year: Volume: 67 Pages: XV, 200 p. DOI: 10.5445/KSP/1000069792 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-28 18:37:01
License:

Loading...
Export citation

Choose an application

Abstract

The high-temperature deformation behavior of oxide dispersion strengthened steels was investigated and correlated to the resulting microstructure using electron microscopy. Viscoplastic constitutive equations were developed from the results to model the deformation behavior.

Kreishohlprofil-X-Knoten aus nichtrostenden Stählen unter Axialbeanspruchung

Author:
Book Series: Berichte zum Stahl- und Leichtbau / Karlsruher Institut für Technologie, Versuchsanstalt für Stahl, Holz und Steine, Stahl- und Leichtbau ISSN: 21987912 ISBN: 9783731505693 Year: Volume: 7 Pages: XIII, 217 p. DOI: 10.5445/KSP/1000057922 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

At present, the design of unstiffened, welded circular hollow section (CHS) joints made of stainless steels is insufficiently regulated since all available design rules are based upon results of investigations on CHS joints made of unalloyed and low-alloy structural steels. This work deals with the load-bearing capacity of uniplanar CHS X-joints made of stainless steels under predominantly static axial loading. A design concept for these type of joints was developed.

First-Principles Approaches to Metals, Alloys, and Metallic Compounds

Author:
ISBN: 9783038973584 9783038973591 Year: Pages: 180 DOI: 10.3390/books978-3-03897-359-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mining and Metallurgy --- Chemistry (General)
Added to DOAB on : 2018-11-26 11:24:24
License:

Loading...
Export citation

Choose an application

Abstract

Current fundamental electronic-structure theory allows for the accurate prediction and characterization of elemental metals adopting any allotropic structure, intermetallic compounds, and other metal-rich phases. From an engineering perspective, there is a need for structural materials that are suitable for mechanical and civil engineering as well as energy production and conversion. While different microstructural features influence the macroscopic behaviour, quantum-mechanical simulation may enormously accelerate and guide the entire development process since atomistic modelling allows for the generation of structural models and the calculation of enthalpies and other free energies as a function of pressure and temperature. Among other things, this volume covers high-manganese steels, some of which have come to light within Collaborative Research Centre 761 (“Steel ab initio”). In particular, it deals with short-range ordering from experiment and theory, also highlighting carbide-like precipitates, and it bridges the gap between atomistic and continuum levels, in particular for hydrogen embrittlement. Molecular dynamics simulates crack propagation, and first-principles theory helps in growing better intermetallic thin films and predicts structural and elastic properties. Eventually, multiscale modelling of hydrogen transport is provided, and the chemical reasons for H-trapping κ-carbides are highlighted. First-principles theory has acquired a powerful role in the fundamental and applied research of metals, alloys, and metallic compounds.

Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites

Authors: ---
Book Series: Springer Series in Materials Science ISBN: 9783030426033 Year: Pages: 829 DOI: 10.1007/978-3-030-42603-3 Language: English
Publisher: Springer Nature
Subject: Agriculture (General) --- Mathematics
Added to DOAB on : 2020-06-16 23:59:31
License:

Loading...
Export citation

Choose an application

Abstract

This open access book presents a collection of the most up-to-date research results in the field of steel development with a focus on pioneering alloy concepts that result in previously unattainable materials properties. Specifically, it gives a detailed overview of the marriage of high-performance steels of the highest strength and form-ability with damage-tolerant zirconia ceramics by innovative manufacturing technologies, thereby yielding a new class of high-performance composite materials. This book describes how new high-alloy stainless TRIP/TWIP steels (TRIP: TRansformation-Induced Plasticity, TWIP: TWinning-induced Plasticity) are combined with zirconium dioxide ceramics in powder metallurgical routes and via melt infiltration to form novel TRIP-matrix composites. This work also provides a timely perspective on new compact and damage-tolerant composite materials, filigree light-weight structures as well as gradient materials, and a close understanding of the mechanisms of the phase transformations. With a detailed application analysis of state-of-the-art methods in spatial and temporal high-resolution structural analysis, in combination with advanced simulation and modelling, this edited volume is ideal for researchers and engineers working in modern steel development, as well as for graduate students of metallurgy and materials science and engineering.

Bainite and Martensite: Developments and Challenges

Author:
ISBN: 9783039288571 / 9783039288588 Year: Pages: 166 DOI: 10.3390/books978-3-03928-858-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The microstructures of both martensite and bainite, although sharing some common features, depict a plethora of subtle differences that made them unique when studied in further detail. Tailoring the final properties of a microstructure based on one or the other as well as in combination with others and exploring more sophisticated concepts, such as Q&P and nanostructured bainite, are the topics which are the focus of research around the world. In understanding the key microstructural parameters controlling the final properties as well as definition of adequate process parameters to attain the desired microstructures requires that a proper understanding of the mechanism ruling their transformation and a detailed characterization first be acheived. The development of new and powerful scientific techniques and equipment (EBSD, APT, HRTEM, etc.) allow us to gain fundamental insights that help to establish some of the principles by which those microstructures are known. The developments accompanying such findings lead to further developments and intensive research providing the required metallurgical support.

Keywords

medium-Mn steel --- austenite decomposition --- dilatometry --- phase equilibrium --- retained austenite --- high carbon steels --- nanobainite --- low temperature bainite --- tensile ductility --- retained austenite stability --- transformation induced plasticity (TRIP) --- microalloyed steels --- niobium --- molybdenum --- titanium --- mechanical properties --- yield strength --- impact toughness --- modeling --- microstructure --- EBSD --- bainite --- ausforming --- kinetics --- plate thickness --- steel --- martensite --- bainite --- Q&amp --- P --- synchrotron --- HEXRD --- TRIP --- low temperature bainite --- nitrocarburising --- surface modification --- retained austenite --- bainitic ferrite --- transmission electron microscopy --- creep resistant steels --- carbonitrides precipitation --- martensite --- tempering --- thermomechanical treatment --- ferritic/martensitic steel --- MX nanoprecipitates --- tempered martensite embrittlement --- lenticular martensite --- offshore steels --- electron backscattering diffraction --- Kernel average misorientation --- transmission Kikuchi diffraction --- ultrahigh strength steel --- austempering --- carbon partitioning --- carbide precipitation --- bainitic/martensitic ferrite --- stainless steel --- metastable austenite --- strain-induced martensite --- transformation kinetics --- inductive measurements --- martensitic steel --- direct quenched --- industrialization --- hot rolling --- tempering --- welding --- fatigue --- high strength steel --- tempering --- dilatation behavior --- phase transformation --- microstructure --- bainite --- martensite --- n/a

Manufacturing and Application of Stainless Steels

Author:
ISBN: 9783039286508 / 9783039286515 Year: Pages: 260 DOI: 10.3390/books978-3-03928-651-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mining and Metallurgy
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Stainless steels represent a quite interesting material family, both from a scientific and commercial point of view, following to their excellent combination in terms of strength and ductility together with corrosion resistance. Thanks to such properties, stainless steels have been indispensable for the technological progress during the last century and their annual consumption increased faster than other materials. They find application in all these fields requiring good corrosion resistance together with ability to be worked into complex geometries. Despite to their diffusion as a consolidated materials, many research fields are active regarding the possibility to increase stainless steels mechanical properties and corrosion resistance by grain refinement or by alloying by interstitial elements. At the same time innovations are coming from the manufacturing process of such a family of materials, also including the possibility to manufacture them starting from metals powder for 3D printing. The Special Issue scope embraces interdisciplinary work covering physical metallurgy and processes, reporting about experimental and theoretical progress concerning microstructural evolution during processing, microstructure-properties relations, applications including automotive, energy and structural.

Failure Mechanisms in Alloys

Author:
ISBN: 9783039282760 9783039282777 Year: Pages: 476 DOI: 10.3390/books978-3-03928-277-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The era of lean production and excellence in manufacturing, advancing with sustainable development, demands the rational utilization of raw materials and energy resources, adopting cleaner and environmentally-friendly industrial processes. In view of the new industrial revolution, through digital transformation, the exploitation of smart and sophisticated materials systems, the need of minimizing scrap and increasing efficiency, reliability and lifetime and, on the other hand, the pursuit of fuel economy and limitation of carbon footprint, are necessary conditions for the imminent growth in a highly competitive economy. Failure analysis is an interdisciplinary scientific topic, reflecting the opinions and interpretations coming from a systematic evidence-gathering procedure, embracing various important sectors, imparting knowledge, and substantiating improvement practices. The deep understanding of material/component role (e.g., rotating shaft, extrusion die, gas pipeline) and properties will be of central importance for fitness for purpose in certain industrial processes and applications. Finally, it is hoped and strongly believed that the accumulation of additional knowledge in the field of failure mechanisms and the adoption of the principles, philosophy, and deep understanding of failure analysis process approach will strongly promote the learning concept, as a continuously evolving process leading to personal and social progress and prosperity.

Keywords

impingement --- erosion corrosion --- API 5L-X65 --- flow loop --- wear scar --- creep fatigue --- crack growth --- grain boundary --- hydrogen-assisted cracking --- corrosion --- SOHIC --- cleavage fracture --- cold-working process --- surface-cracking process --- impact toughness --- strength --- low temperatures --- austenitic stainless steels --- pipeline steel --- tensile stress --- corrosion --- potentiodynamic polarization --- EIS --- brass extrusion --- CFD simulation --- extrusion failures --- plastic deformation processing --- finite element analysis --- inverse modeling --- post-necking hardening --- biaxial tensile test --- elevated temperature --- reliability design --- helix upper dispenser --- fracture --- parametric accelerated life testing --- faulty designs --- metal components --- fracture mechanisms --- fractography --- fracture mechanics --- quality improvement --- finite element modeling --- nanocrystalline materials --- elastic moduli --- yield strength --- cast duplex stainless steels --- thermal aging --- tensile deformation --- spinodal decomposition --- smooth particle hydrodynamics --- Titanium alloy machining --- numerical simulation --- cutting forces --- chip formation --- fracture --- iterative FEM Method --- GISSMO Model --- softening --- macroscopic strength criterion --- isotropic metals --- fracture plane --- linear Mohr–Coulomb criterion --- failure mechanism --- W-30Cu --- microstructure homogeneity --- dynamic compression strength --- ductility --- failure mechanism --- slow-rate machining --- chip formation --- shape --- temperature --- microhardness HV --- creep --- steam reforming --- carbides --- G-phase --- aging --- cast reformer tubes --- hot stamping --- press hardening --- austenitizing furnace --- high temperature fatigue --- thermal distortion --- conveying system --- refractory steels --- furnace component failure --- ductile irons --- tensile tests --- mechanical properties --- constitutive equations --- quality assessment --- shear angle --- chip root --- shape --- built-up edge --- slow-rate machining --- convection tubes --- AISI 304 stainless steel --- failure analysis --- sensitization --- bake hardening --- dent resistance --- failure study --- polynomial regression --- yield strength --- automotive steels --- reformer tubes --- HP-Mod --- failure analysis --- creep --- surface modification techniques --- degradation of protective layers --- lubrication --- nitrocarburizing --- hardfacings --- thermal-sprayed coatings --- finite element analysis --- forward slip prediction --- strip marking method --- multilinear regression --- micro flexible rolling --- thickness transition area --- 3D Voronoi modelling --- automotive --- 6063 Alloy --- EBSD --- bendability --- fractography --- modeling --- texture --- tribological properties --- wear --- surface treatment --- self-equalizing bearing --- n/a

Microstructure and Mechanical Properties of Structural Metals and Alloys

Author:
ISBN: 9783038975052 9783038975069 Year: Pages: 272 DOI: 10.3390/books978-3-03897-506-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The papers collected in this special issue clearly reflect the modern research trends in materials science. These fields of specific attention are high-Mn TWIP steels, high-Cr heat resistant steels, aluminum alloys, ultrafine grained materials including those developed by severe plastic deformation, and high-entropy alloys. The major portion of the collected papers is focused on the mechanisms of microstructure evolution and the mechanical properties of metallic materials subjected to various thermo-mechanical, deformation or heat treatments. Another large portion of the studies is aimed on the elaboration of alloying design of advanced steels and alloys. The changes in phase content, transformation and particle precipitation and their effect on the properties are also broadly presented in this collection, including the microstructure/property changes caused by irradiation.

Keywords

Mg–Sm–Zn–Zr --- dynamic precipitation --- microstructure --- mechanical property --- bimodal ferrite steel --- ultrafine-grained microstructure --- mechanical properties --- corrosion resistance --- abnormal grain growth --- grain boundary engineering --- electron backscattered diffraction --- growth rate --- Al metal matrix composites --- microstructure --- mechanical properties --- strengthening mechanism --- hot compression --- dynamic recovery --- dynamic recrystallization --- texture --- aluminum alloys --- Al-Fe-Si-Zr system --- microstructure --- hardness --- electrical conductivity --- metal–matrix composite --- high-pressure torsion --- microstructure evolution --- microhardness --- shape memory alloy --- columnar grain --- Cu-Al-Mn --- elastocaloric effect --- strain rate --- measuring temperature --- creep --- lead-free solder --- Sb solder --- Sn-8.0Sb-3.0Ag --- solder microstructure --- martensitic steels --- creep --- precipitation --- electron microscopy --- high-Mn TWIP steel --- cold rolling --- annealing --- recovery --- recrystallization --- strengthening --- austenitic 304 stainless steels --- sub-merged arc welding --- post-weld heat treatment --- aluminum alloys --- aging --- precipitation --- electrical resistivity --- mechanical properties --- ferritic steel --- irradiation --- nanoindentation --- hardness --- transmission electron microscopy (TEM) --- microstructure --- high-entropy alloys --- high-pressure torsion --- microstructure evolution --- twinning --- mechanical properties --- welded rotor --- weld metal --- impact toughness --- PWHT --- microstructure evolution --- Cu-Cr-Zr --- precipitation --- orientation relationship --- recrystallization --- annealing twins --- structural steel plate --- nonmetallic inclusions --- rare earth control --- M23C6 --- ion irradiation --- M6C --- amorphization --- RAFM steels --- hot stamping --- press hardening --- martensitic expansion --- force peak --- cycle time --- high-Mn steel --- deformation twinning --- dynamic recrystallization --- grain refinement --- work hardening --- in situ tensile testing --- super duplex stainless steel --- SDSS --- low-temperature --- ?-phase --- SEM --- EBSD --- microstructure analysis --- n/a

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Narrow your search