Search results: Found 2

Listing 1 - 2 of 2
Sort by
Selective Catalytic Reduction of NOx

Author:
ISBN: 9783038973645 9783038973652 Year: Pages: 280 DOI: 10.3390/books978-3-03897-365-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemical Engineering --- Chemistry (General)
Added to DOAB on : 2018-12-14 10:30:46
License:

Loading...
Export citation

Choose an application

Abstract

The most efficient process to reduce NOx emissions from lean exhaust gases, selective catalytic reduction (SCR) with ammonia, has undergone tremendous development over the past decades. Originally only applied in stationary power plants and industrial installations, SCR systems are now installed in millions of mobile diesel engines, ranging from off-road machineries, to heavy-duty and light-duty trucks and passenger cars, to locomotives and ships. All of these applications involve specific challenges due to tighter emission limits, new internal combustion engine technologies, or alternative fuels.Three review articles and 14 research articles in this book describe recent results and research trends of various aspects of the SCR process. Reaction engineering aspects, such as the proper dosage of ammonia or urea, respectively, are as important as further developments of the different SCR catalysts, by deepening the understanding of their functionality or by systematic improvements of their properties, such as low-temperature activity, selectivity, or poisoning-resistance. Another covered aspect is cost reduction through the use of cheaper base materials for the production is active and stable SCR catalysts. Finally, research efforts are reported to develop SCR processes with different reducing agents, which would open doors to new applications in the future. The range of topics addressed in this book will stimulate the reader’s interest as well as provide a valuable source of information for researchers in academia and industry.

Catalysts Deactivation, Poisoning and Regeneration

Authors: ---
ISBN: 9783039215461 / 9783039215478 Year: Pages: 254 DOI: 10.3390/books978-3-03921-547-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Catalyst lifetime represents one of the most crucial economic aspects in industrial catalytic processes, due to costly shutdowns, catalyst replacements, and proper disposal of spent materials. Not surprisingly, there is considerable motivation to understand and treat catalyst deactivation, poisoning, and regeneration, which causes this research topic to continue to grow. The complexity of catalyst poisoning obviously increases along with the increasing use of biomass/waste-derived/residual feedstocks and with requirements for cleaner and novel sustainable processes. This book collects 15 research papers providing insights into several scientific and technical aspects of catalyst poisoning and deactivation, proposing more tolerant catalyst formulations, and exploring possible regeneration strategies.

Keywords

hydrogenation --- copper --- catalyst --- water --- deactivation --- octanal --- octanol --- V2O5–WO3/TiO2 catalysts --- poisoning --- sulfur-containing sodium salts --- SO3 --- NO removal --- Cu/SSZ-13 --- NH3-SCR --- sodium ions --- deactivation mechanism --- sulfur poisoning --- coke deposition --- in situ regeneration --- Co-Zn/H-Beta --- NOx reduction by C3H8 --- catalyst deactivation --- diesel --- natural gas --- SEM --- TEM --- poisoning --- oxygen storage capacity --- thermal stability --- cyclic operation --- deactivation --- oxysulfate --- oxysulfide --- Selective Catalytic Reduction (SCR) --- SO2 poisoning --- Low-temperature catalyst --- nitrogen oxides --- nitrous oxide --- dry reforming of methane --- nickel catalysts --- barium carbonate --- deactivation by coking --- catalytic methane combustion --- exhaust gas --- catalyst durability --- Liquefied natural gas --- biogas --- vehicle emission control --- sulfur deactivation --- catalyst deactivation --- aluminum sulfate --- palladium sulfate --- regeneration --- phthalic anhydride --- vanadia-titania catalyst --- unusual deactivation --- physico-chemical characterization --- over-reduction --- vanadia species --- coke deposition --- DeNOx --- MW incinerator --- deactivation --- ammonium sulfates --- regeneration --- washing --- CO2 reforming --- Ni-catalyst --- syngas --- tetragonal zirconia --- phase stabilization --- CPO reactor --- effect of flow rate --- deactivation --- iso-octane --- Rh catalysts --- Rh --- homogeneous catalysis --- catalyst deactivation --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (1)

english (1)


Year
From To Submit

2019 (1)

2018 (1)