Search results: Found 9

Listing 1 - 9 of 9
Sort by
Non-conventional Yeast in the Wine Industry

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450534 Year: Pages: 177 DOI: 10.3389/978-2-88945-053-4 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Saccharomyces cerevisiae strains that exhibit high ethanol tolerance and excellent fermentative ability are extensively used in winemaking as selected starters. However, a side-effect of the widespread use of these commercial starter cultures is the elimination of native microbiota, which might result in wines with similar analytical and sensory properties, depriving them from the variability, complexity and personality that define the typicality of a wine. Nonetheless, a way of balancing control and yeast population diversity during wine fermentation is the selection of non-Saccharomyces yeasts with optimal oenological traits. Therefore, a current trend in enology is the implementation of mixed- or multi-starters cultures, combining S. cerevisiae that remains the yeast species required for the completion of fermentation and non-Saccharomyces yeasts isolated from the native flora of grape juices. This research topic mainly deals with possible applications of different non-Saccharomyces yeast to wine production such as aroma production, ethanol reduction or biocontrol.Saccharomyces cerevisiae strains that exhibit high ethanol tolerance and excellent fermentative ability are extensively used in winemaking as selected starters. However, a side-effect of the widespread use of these commercial starter cultures is the elimination of native microbiota, which might result in wines with similar analytical and sensory properties, depriving them from the variability, complexity and personality that define the typicality of a wine. Nonetheless, a way of balancing control and yeast population diversity during wine fermentation is the selection of non-Saccharomyces yeasts with optimal oenological traits. Therefore, a current trend in enology is the implementation of mixed- or multi-starters cultures, combining S. cerevisiae that remains the yeast species required for the completion of fermentation and non-Saccharomyces yeasts isolated from the native flora of grape juices. This research topic mainly deals with possible applications of different non-Saccharomyces yeast to wine production such as aroma production, ethanol reduction or biocontrol.

Yeast Biotechnology 2.0

Author:
ISBN: 9783038974314 9783038974321 Year: Pages: 216 DOI: 10.3390/books978-3-03897-432-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biotechnology --- Biology
Added to DOAB on : 2019-01-10 10:41:31
License:

Loading...
Export citation

Choose an application

Abstract

Yeasts are truly fascinating microorganisms. Due to their diverse and dynamic activities, they have been used for the production of many interesting products, such as beer, wine, bread, biofuels, and biopharmaceuticals. Saccharomyces cerevisiae (brewers’ or bakers’ yeast) is the yeast species that is surely the most exploited by humans. Saccharomyces is a top-choice organism for industrial applications, although its use for producing beer dates back to at least the 6th millennium BC. Bakers’ yeast has been a cornerstone of modern biotechnology, enabling the development of efficient production processes. Today, diverse yeast species are explored for industrial applications. This Special Issue “Yeast Biotechnology 2.0” is a continuation of the first Special Issue, “Yeast Biotechnology” (https://www.mdpi.com/books/pdfview/book/324). It compiles the current state-of-the-art of research and technology in the area of “yeast biotechnology” and highlights prominent current research directions in the fields of yeast synthetic biology and strain engineering, new developments in efficient biomolecule production, fermented beverages (beer, wine, and honey fermentation), and yeast nanobiotechnology.]

The Evolving Telomeres

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198818 Year: Pages: 74 DOI: 10.3389/978-2-88919-881-8 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Genetics
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

What controls the different rates of evolution to give rise to conserved and divergent proteins and RNAs? How many trials until evolution can adapt to physiological changes? Every organism has arisen through multiple molecular changes, and the mechanisms that are employed (mutagenesis, recombination, transposition) have been an issue left to the elegant discipline of evolutionary biology. But behind the theory are realities that we have yet to ascertain: How does an evolving cell accommodate its requirements for both conserving its essential functions, while also providing a selective advantage? In this volume, we focus on the evolution of the eukaryotic telomere, the ribo-nuclear protein complex at the end of a linear chromosome. The telomere is an example of a single chromosomal element that must function to maintain genomic stability. The telomeres of all species must provide a means to avoid the attrition from semi-conservative DNA replication and a means of telomere elongation (the telomere replication problem). For example, telomerase is the most well-studied mechanism to circumvent telomere attrition by adding the short repeats that constitutes most telomeres. The telomere must also guard against the multiple activities that can act on an unprotected double strand break requiring a window (or checkpoint) to compensate for telomere sequence loss as well as protection against non-specific processes (the telomere protection problem). This volume describes a range of methodologies including mechanistic studies, phylogenetic comparisons and data-based theoretical approaches to study telomere evolution over a broad spectrum of organisms that includes plants, animals and fungi. In telomeres that are elongated by telomerases, different components have widely different rates of evolution. Telomerases evolved from roots in archaebacteria including splicing factors and LTR-transposition. At the conserved level, the telomere is a rebel among double strand breaks (DSBs) and has altered the function of the highly conserved proteins of the ATM pathway into an elegant means of protecting the chromosome end and maintaining telomere size homeostasis through a competition of positive and negative factors. This homeostasis, coupled with highly conserved capping proteins, is sufficient for protection. However, far more proteins are present at the telomere to provide additional species-specific functions. Do these proteins provide insight into how the cell allows for rapid change without self-destruction?

Modern Technologies and Their Influence in Fermentation Quality

Author:
ISBN: 9783039289479 / 9783039289486 Year: Pages: 220 DOI: 10.3390/books978-3-03928-948-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

During the last few years, industrial fermentation technologies have advanced in order to improve the quality of the final product. Some examples of those modern technologies are the biotechnology developments of microbial materials, such as Saccharomyces and non-Saccharomyces yeasts or lactic bacteria from different genera. Other technologies are related to the use of additives and adjuvants, such as nutrients, enzymes, fining agents, or preservatives and their management, which directly influence the quality and reduce the risks in final fermentation products. Other technologies are based on the management of thermal treatments, filtrations, pressure applications, ultrasounds, UV, and so on, which have also led to improvements in fermentation quality in recent years. The aim of the issue is to study new technologies able to improve the quality parameters of fermentation products, such as aroma, color, turbidity, acidity, or any other parameters related to improving sensory perception by the consumers. Food safety parameters are also included.

Keywords

itaconic acid --- A. terreus --- pH control --- glucose --- kinetic analysis --- Gompertz-model --- biogenic amines --- ethyl carbamate --- ochratoxin A --- sulfur dioxide --- phthalates --- HACCP --- Yeasts --- alcoholic beverages --- resveratrol --- glutathione --- trehalose --- tryptophan --- melatonin --- serotonin --- tyrosol --- tryptophol --- hydroxytyrosol --- IAA --- probiotics --- Torulaspora delbrueckii --- Lachancea thermotolerans --- Metschnikowia pulcherrima --- Schizosaccharomyces pombe --- Pichia kluyveri --- non-Saccharomyces --- biocontrol application --- non-Saccharomyces screening --- SO2 reduction --- lactic acid bacteria --- yeasts --- chemical analyses --- volatile compounds --- sensory evaluation --- shiraz --- low-ethanol wines --- sequential culture --- Hanseniaspora uvarum yeast --- aromatic/sensorial profiles --- narince --- autochthonous --- Saccharomyces cerevisiae --- aroma --- white wine --- cashew apple juice --- non-conventional yeasts --- alcoholic beverages --- aroma profile --- Hanseniaspora guilliermondii --- Torulaspora microellipsoides --- Saccharomyces cerevisiae --- meta-taxonomic analysis --- vineyard soil --- wine-related bacteria --- wine-related fungi --- sequential inoculation --- Saccharomyces --- non-Saccharomyces --- Riesling --- aroma compound --- Torulaspora delbrueckii --- Pichia kluyveri --- Lachancea thermotolerans --- Tannat --- must replacement --- hot pre-fermentative maceration --- wine color --- wine composition --- climate change --- food quality --- viticulture --- wine --- fermentation --- yeast --- Saccharomyces --- non-Saccharomyces --- alcoholic fermentation --- lactic acid bacteria --- malolactic fermentation --- native yeast --- Saccharomyces cerevisiae --- aroma --- Malvar (Vitis vinifera L. cv.) --- white wine --- yeasts --- Bombino bianco --- technological characterization --- enzymatic patterns --- amino acid decarboxylation --- Lachancea thermotolerans --- non-Saccharomyces --- Saccharomyces --- acidity --- food safety --- HACCP --- wine quality --- color --- human health-promoting compounds --- biocontrol --- wine flavor --- low ethanol wine --- Vineyard Microbiota --- wine color --- wine aroma --- climate change

Enological Repercussions of Non-Saccharomyces Species

Author:
ISBN: 9783039215584 9783039215591 Year: Pages: 218 DOI: 10.3390/books978-3-03921-559-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

From the beginning of this century, non-Saccharomyces yeasts have taken increased relevance in wine processing. Several biotechnological companies now produce non-Saccharomyces yeasts at an industrial level to improve aroma or flavor, stabilize wine, produce biological acidification, or conversely metabolize malic acid. Species like Torulaspora delbrueckii, Metschnikowia pulcherrima, Kloeckera apiculata, Lachancea thermotolerans, Schizosaccharomyces pombe, and several others are common due to the technological applications they have in sensory quality but also in wine ageing and stabilization. Moreover, spoilage non-Saccharomyces yeasts like Brettanomyces bruxellensis, Saccharomycodes ludwigii, and Zygosacharomyces bailii are becoming important because of the alterations they are able to produce in high-quality wines. New strategies to control these defective yeasts have been developed to control them without affecting sensory quality. The knowledge of the physiology, ecology, biochemistry, and metabolomics of these yeasts can help to better use them in controlling traditional problems such as low fermentative power, excessive volatile acidity, low implantation under enological conditions, and sensibility to antimicrobial compounds like sulfites traditionally used in wine processing. This Special Issue intends to compile current research and revised information on non-Saccharomyces yeasts with enological applications to facilitate the use and the understanding of this biotechnological tool. In 1 year this SI has globally more than 15kdownloads and produced more than 30 citations.

Keywords

Lachancea thermotolerans --- Kluyveromyces thermotolerans --- acidification --- wines --- sequential fermentations --- non-Saccharomyces --- non-Saccharomyces yeasts --- Wickerhamomyces anomalus --- Pichia anomala --- enzymes --- glycosidases --- acetate esters --- biocontrol --- mixed starters --- wine --- wine --- Zygosaccharomyces rouxii --- re-fermentation --- spoilage-control --- non-Saccharomyces --- high-ethanol --- Schizosaccharomyces pombe --- oenological uses --- maloalcoholic fermentation --- stable pigments --- wine safety --- non-Saccharomyces yeast --- Saccharomycodes ludwigii --- S. ludwigii --- spoilage yeasts’ control --- ageing-on-lees --- non-Saccharomyces --- yeast --- sparkling wine --- nitrogen --- aroma --- Candida stellata --- ecology --- taxonomy --- metabolism --- processing foods --- co-fermentation --- non-Saccharomyces --- genome --- aroma compounds --- anthocyanin --- mixed cultures fermentation --- flavor complexity --- Aureobasidium pullulans --- biotechnological applications --- viticulture --- enzymes --- non-Saccharomyces yeasts --- Torulaspora delbrueckii --- winemaking --- yeast inoculation --- yeast dominance --- wine quality --- genetic improvement --- antimicrobial peptides --- biocontrol --- Brettanomyces bruxellensis --- Candida intermedia --- wine --- off-flavors --- wine acidity --- volatile acidity --- malolactic bacteria --- Lactobacillus plantarum --- Lachancea thermotolerans --- Schizosaccharomyces pombe --- Candida stellate --- Torulaspora delbrueckii --- Zygotorulaspora florentina --- Pichia kudriavzevii --- Stermerella bacillaris --- Metschnikowia pulcherrima --- oenological uses --- enzymes --- stable pigments --- pulcherrimin --- n/a --- n/a

Wine Fermentation

Author:
ISBN: 9783038976745 Year: Pages: 176 DOI: 10.3390/books978-3-03897-675-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biotechnology --- Technology (General)
Added to DOAB on : 2019-04-05 11:07:22
License:

Loading...
Export citation

Choose an application

Abstract

This book is a printed edition of the Special Issue Wine Fermentation that was published in Fermentation

TRP Channels in Health and Disease

Author:
ISBN: 9783039210824 9783039210831 Year: Pages: 266 DOI: 10.3390/books978-3-03921-083-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Almost 25 years ago, the first mammalian transient receptor potential (TRP) channel was cloned and published. TRP channels now represent an extended family of 28 members fulfilling multiple roles in the living organism. Identified functions include control of body temperature, transmitter release, mineral homeostasis, chemical sensing, and survival mechanisms in a challenging environment. The TRP channel superfamily covers six families: TRPC with C for “canonical”, TRPA with A for “ankyrin”, TRPM with M for “melastatin”, TRPML with ML for “mucolipidin”, TRPP with P for “polycystin”, and TRPV with V for “vanilloid”. Over the last few years, new findings on TRP channels have confirmed their exceptional function as cellular sensors and effectors. This Special Book features a collection of 8 reviews and 7 original articles published in “Cells” summarizing the current state-of-the-art on TRP channel research, with a main focus on TRP channel activation, their physiological and pathophysiological function, and their roles as pharmacological targets for future therapeutic options.

Keywords

ion channel --- TRPC --- small molecules --- calcium --- chemical probes --- TRPV1 --- TRPV2 --- TRPV3 --- TRPV4 --- mucosal epithelium --- ulcerative colitis --- inflammatory bowel disease --- TRPM4 channel --- cardiovascular system --- physiology --- pathophysiology --- TRPC6 --- elementary immunology --- inflammation --- calcium --- sodium --- neutrophils --- lymphocytes --- endothelium --- platelets --- human medulla oblongata --- cuneate nucleus --- dorsal column nuclei --- TRPV1 --- calcitonin gene-related peptide --- substance P --- TRP channels --- calcium signaling --- salivary glands --- xerostomia --- radiation --- inflammation --- transient receptor potential channels --- TRPC3 pharmacology --- channel structure --- lipid mediators --- photochromic ligands --- transient receptor potential --- TRPC3 --- mGluR1 --- GABAB --- EPSC --- Purkinje cell --- cerebellum --- toxicology --- TRP channels --- organ toxicity --- chemicals --- pollutants --- chemosensor --- TRPM7 --- kinase --- inflammation --- lymphocytes --- calcium signalling --- SMAD --- TH17 --- hypersensitivity --- regulatory T cells --- thrombosis --- graft versus host disease --- 2D gel electrophoresis --- AP18 --- HEK293 --- HSP70 --- MALDI-TOF MS(/MS) --- nanoHPLC-ESI MS/MS --- proteomics --- sulfur mustard --- TRPA1 --- TRPC channels --- diacylglycerol --- TRPC4 --- TRPC5 --- NHERF --- TRP channel --- TRPY1 --- Saccharomyces cerevisiae --- calcium --- manganese --- oxidative stress --- ion channels --- overproduction --- production platform --- protein purification --- Saccharomyces cerevisiae --- sensors --- transient receptor potential (TRP) channels --- yeast --- adipose tissue --- bioavailable --- menthol --- topical --- TRPM8 --- n/a

Effects of Mycotoxins on the Intestine

Authors: --- ---
ISBN: 9783038977827 9783038977834 Year: Pages: 262 DOI: 10.3390/books978-3-03897-783-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Public Health
Added to DOAB on : 2019-05-09 17:16:14
License:

Loading...
Export citation

Choose an application

Abstract

Mycotoxins are secondary metabolites produced by several fungal species. They can contaminate human food and animal feed, and have been a threat for thousands of years. The gastrointestinal tract is the first target when ingesting mycotoxin-contaminated food or feed. As unlikely as it sounds, the investigations concerning the effects of mycotoxins on the intestine are still in their early stages. This book gathers the most recent advances related to the characterization of the intestinal toxicity of mycotoxins. Substantial data assembled on the damage caused to a number of histological structures and functions of the intestine remove any remaining doubt about this organ being a primary target for the toxicity of mycotoxins. An interesting overview of the detrimental effects of mycotoxins on the gut-hosted microbiota—now regarded as a fully-fledged organ associated with the gut—is also given. Finally, outstanding contributions in this book address questions relating to the suitability of current regulations to protect against alterations of the intestine, and to the efficacy assessment of new detoxification strategies using the intestinal toxicity of mycotoxins as a relevant endpoint.

Keywords

mice --- aflatoxin B1 --- intestinal bacterial flora --- response --- Clostridium sp. WJ06 --- deoxynivalenol --- pig --- intestinal morphology --- microbial diversity --- aflatoxin M1 --- ochratoxin A --- intestinal epithelial cells --- tight junction --- permeability --- ileum --- jejunum --- deoxynivalenol --- piglet --- contaminated feed --- tight junction --- aflatoxin B1 --- small intestine --- histopathological lesions --- ultrastructural changes --- toll-like receptors --- T-2 toxin --- enteric nervous system --- pig --- vasoactive intestinal polypeptide --- mycotoxins --- zearalenone --- deoxynivalenol --- histology --- ultrastructure --- large intestine --- pig --- Claviceps --- liver --- digestive tract --- mycotoxin --- sclerotia --- ergot alkaloids --- toxicity --- deoxynivalenol --- Saccharomyces cerevisiae boulardii CNCM I-1079 --- intestine --- transcriptome --- inflammation --- oxidative stress --- lipid metabolism --- fumonisin --- microbiota --- pigs --- MiSeq 16S rDNA sequencing --- intestinal microbiota --- hydrogen-rich water --- lactulose --- Fusarium mycotoxins --- piglets --- functional oligosaccharides --- mycotoxins --- swine --- explant technique --- intestinal morphology --- goblet cells --- deoxynivalenol --- zearalenone --- pig --- colon microbiota --- Lactobacillus --- detoxification --- zearalenone --- doses --- caecal water --- genotoxicity --- pre-pubertal gilts --- atlantic salmon --- deoxynivalenol --- feed --- intestine --- PCR --- proliferating cell nuclear antigen --- suppressor of cytokine signaling --- tight junctions --- Zearalenone --- N-acetylcysteine --- SIEC02 cells --- Mitochondrial apoptosis --- n/a

Mycoviruses

Author:
ISBN: 9783038979968 9783038979975 Year: Pages: 350 DOI: 10.3390/books978-3-03897-997-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

A virus (from the Latin word ‘v?rus’ meaning ‘venom’ or ‘poison’) is a microorganism invisible to the naked eye. Viruses can multiply exclusively by entering a cell and using the cell’s resources to create copies of themselves. As the origin of their name suggests, viruses are generally considered dangerous, harmful and often deadly. Some of the most well-studied and widely known viruses, such as HIV and influenza, infect humans. However, viruses can also infect animals, plants and microorganisms, including fungi. Many fungi are medically, ecologically and economically significant, for example, causing diseases to humans, plants and insects or being used in industry to produce bread, cheese, beer and wine. Viruses that infect fungi are called mycoviruses (from the Greek work ‘myco’, meaning ‘fungus’). Mycoviruses do not cause harm to or kill the infected fungus; in contrast, they are ‘friendly’ viruses and we can utilize them to control the growth, pathogenicity and toxin production of fungi. This book describes a range of different mycoviruses and their geographical distribution, transmission and evolution, together with their effects on the fungal hosts and how these are brought about.

Keywords

RNA silencing --- gemycircularvirus --- mycovirus --- antiviral --- dicer --- dsRNA mycoviruses --- multiplex PCR --- Aspergillus fumigatus chrysovirus --- Aspergillus fumigatus partitivirus-1 --- Aspergillus fumigatus tetramycovirus-1. --- Botrytis cinerea --- hypovirus --- fusarivirus --- hypovirulence --- infection cushion --- Botrytis cinerea --- Botrytis cinerea mymonavirus 1 --- Mymonaviridae --- dsRNA virus --- mycovirus --- capsid protein --- capsid structure --- virus evolution --- viral lineage --- ScV-L-A --- PcV --- PsV-F --- RnQV1 --- chrysovirus --- mycovirus --- Aspergillus --- A. fumigatus --- A. nidulans --- A. niger --- A. thermomutatus --- biocontrol --- Saccharomyces paradoxus --- Totiviridae --- dsRNA virus --- killer system --- Trichoderma atroviride --- Mycovirus --- Partitivirus --- Fusarium head blight --- mycovirus --- RNA genome --- mitovirus --- Tymovirales --- Ethiopia --- Sclerotinia minor --- endornavirus --- hypovirulence --- transmissibility --- biological control --- Chalara fraxinea --- Hymenoscyphus pseudoalbidus --- ash dieback --- Narnaviridae --- evolution --- invasive species --- horizontal virus transmission --- Brunchorstia pinea --- conifers --- mycovirus --- dsRNA --- ssRNA --- phylogeny --- evolution --- mycovirus --- Beauveria bassiana --- partitivirus --- victorivirus --- polymycovirus --- selection pressure --- recombination --- transmission --- mycovirus --- populations study --- Cryphonectria parasitica --- chestnut blight --- Castanea sativa --- biological control --- Mycovirus --- rice blast fungus --- Magnaporthe oryzae. chrysovirus 1 --- double-stranded RNA virus --- hypovirulence --- Rhizoctonia solani AG-1 IA --- mycovirus --- dsRNA --- Alphapartitivirus --- genomic structure analysis --- mycorrhizal fungi --- mycovirus --- mitovirus --- Rhizophagus --- hypovirus --- small RNA --- tRFs --- mycovirus --- fungal viruses --- dsRNA mycoviruses --- hypervirulence --- Leptosphaeria biglobosa quadrivirus --- Botrytis cinerea --- hypovirulence --- partitivirus --- conidiogenesis --- sclerogenesis --- mycovirus --- dsRNA --- sequencing --- killer toxin --- totivirus --- brown rot --- stone fruit --- Prunus --- mycovirus --- hypervirulence --- hypovirulence --- isogenic --- database mining --- Entomophthora --- Entomophthoromycotina --- fungal virus --- mitochondrion --- mycovirus --- virus discovery --- Mitovirus --- Narnaviridae --- n/a

Listing 1 - 9 of 9
Sort by
Narrow your search