Search results: Found 1

Listing 1 - 1 of 1
Sort by
Decomposability of Tensors

ISBN: 9783038975908 / 9783038975915 Year: Pages: 160 DOI: 10.3390/books978-3-03897-591-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Physics (General)
Added to DOAB on : 2019-02-15 09:41:46

Export citation

Choose an application


Tensor decomposition is a relevant topic, both for theoretical and applied mathematics, due to its interdisciplinary nature, which ranges from multilinear algebra and algebraic geometry to numerical analysis, algebraic statistics, quantum physics, signal processing, artificial intelligence, etc. The starting point behind the study of a decomposition relies on the idea that knowledge of elementary components of a tensor is fundamental to implement procedures that are able to understand and efficiently handle the information that a tensor encodes. Recent advances were obtained with a systematic application of geometric methods: secant varieties, symmetries of special decompositions, and an analysis of the geometry of finite sets. Thanks to new applications of theoretic results, criteria for understanding when a given decomposition is minimal or unique have been introduced or significantly improved. New types of decompositions, whose elementary blocks can be chosen in a range of different possible models (e.g., Chow decompositions or mixed decompositions), are now systematically studied and produce deeper insights into this topic. The aim of this Special Issue is to collect papers that illustrate some directions in which recent researches move, as well as to provide a wide overview of several new approaches to the problem of tensor decomposition.

Listing 1 - 1 of 1
Sort by
Narrow your search


MDPI - Multidisciplinary Digital Publishing Institute (1)


CC by-nc-nd (1)


english (1)

From To Submit

2019 (1)