Search results: Found 4

Listing 1 - 4 of 4
Sort by
Developing Stem Cell-Based Therapies For Neural Repair

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194025 Year: Pages: 114 DOI: 10.3389/978-2-88919-402-5 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

Current pharmacotherapies and surgical intervention provide limited benefit in the treatment of neural injuries or halting disease progression and has resulted in significant hope for the successes of stem cell research. The properties of stem cells render them appropriate for cell replacement therapy, endogenous repair, disease modeling as well as high-throughput drug screening and development. Such applications will aide in increasing our knowledge and developing treatments for neurodegenerative disorders such as Parkinson’s disease and Huntington’s diseases as well as neural traumas including ischemic brain damage and traumatic brain injury. This Frontiers Research topic encouraged contributions from the general field of stem cell biology, with a particular emphasis on utilizing these cells to develop new therapies for neural repair. Related articles deal with issues such as: breakthroughs in stem cell proliferation/differentiation methodologies, using pluripotent and neural stem cells for transplantation and endogenous repair, the use of patient derived stem cells for disease modeling, using stem cells for drug discovery as well as the ethical issues related to the use of stem cells.

iPS Cells for Modelling and Treatment of Human Diseases

ISBN: 9783038421221 9783038421214 Year: Pages: 422 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2016-05-09 15:30:07
License:

Loading...
Export citation

Choose an application

Abstract

The field of reprogramming somatic cells into induced pluripotent stem cells (iPSC) has moved very quickly, from bench to bedside in just eight years since its first discovery. The best example of this is the RIKEN clinical trial this year in Japan, which will use iPSC derived retinal pigmented epithelial (RPE) cells to treat macular degeneration (MD). This is the first human disease to be tested for regeneration and repair by iPSC-derived cells and others will follow in the near future. Currently, there is an intense worldwide research effort to bring stem cell technology to the clinic for application to treat human diseases and pathologies. Human tissue diseases (including those of the lung, heart, brain, spinal cord, and muscles) drive organ bioengineering to the forefront of technology concerning cell replacement therapy. Given the critical mass of research and translational work being performed, iPSCs may very well be the cell type of choice for regenerative medicine in the future. Also, basic science questions, such as efficient differentiation protocols to the correct cell type for regenerating human tissues, the immune response of iPSC replacement therapy and genetic stability of iPSC-derived cells, are currently being investigated for future clinical applications.

Stem Cell and Biologic Scaffold Engineering

Author:
ISBN: 9783039214976 / 9783039214983 Year: Pages: 110 DOI: 10.3390/books978-3-03921-498-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Tissue engineering and regenerative medicine is a rapidly evolving research field which effectively combines stem cells and biologic scaffolds in order to replace damaged tissues. Biologic scaffolds can be produced through the removal of resident cellular populations using several tissue engineering approaches, such as the decellularization method. Indeed, the decellularization method aims to develop a cell-free biologic scaffold while keeping the extracellular matrix (ECM) intact. Furthermore, biologic scaffolds have been investigated for their in vitro potential for whole organ development. Currently, clinical products composed of decellularized matrices, such as pericardium, urinary bladder, small intestine, heart valves, nerve conduits, trachea, and vessels, are being evaluated for use in human clinical trials. Tissue engineering strategies require the interaction of biologic scaffolds with cellular populations. Among them, stem cells are characterized by unlimited cell division, self-renewal, and differentiation potential, distinguishing themselves as a frontline source for the repopulation of decellularized matrices and scaffolds. Under this scheme, stem cells can be isolated from patients, expanded under good manufacturing practices (GMPs), used for the repopulation of biologic scaffolds and, finally, returned to the patient. The interaction between scaffolds and stem cells is thought to be crucial for their infiltration, adhesion, and differentiation into specific cell types. In addition, biomedical devices such as bioreactors contribute to the uniform repopulation of scaffolds. Until now, remarkable efforts have been made by the scientific society in order to establish the proper repopulation conditions of decellularized matrices and scaffolds. However, parameters such as stem cell number, in vitro cultivation conditions, and specific growth media composition need further evaluation. The ultimate goal is the development of “artificial” tissues similar to native ones, which is achieved by properly combining stem cells and biologic scaffolds and thus bringing them one step closer to personalized medicine. The original research articles and comprehensive reviews in this Special Issue deal with the use of stem cells and biologic scaffolds that utilize state-of-the-art tissue engineering and regenerative medicine approaches.

Towards Mechanism-based Treatments for Fragile X Syndrome

Authors: ---
ISBN: 9783039215058 / 9783039215065 Year: Pages: 250 DOI: 10.3390/books978-3-03921-506-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

It has been more than 25 years since the identification of the FMR1 gene and the demonstration of the causative role of CGG-repeat expansion in the disease pathology of fragile X syndrome (FXS), but the underlying mechanisms involved in the expansion mutation and the resulting gene silencing still remain elusive. Our understanding of the pathways impacted by the loss of FMRP function has grown tremendously, and has opened new avenues for targeted treatments for FXS. However, the failure of recent clinical trials that were based on successful preclinical studies using the Fmr1 knockout mouse model has forced the scientific community to revisit clinical trial design and identify objective outcome measures. There has also been a renewed interest in restoring FMR1 gene expression as a possible treatment approach for FXS. This special issue of Brain Sciences highlights the progress that has been made towards understanding the disease mechanisms and how this has informed the development of treatment strategies that are being explored for FXS.

Keywords

fragile X syndrome --- clinical trials --- targeted treatments --- drug development --- fragile X syndrome --- clinical trials --- treatment development --- best practices --- fragile X syndrome --- newborn screening --- early identification --- fragile X syndrome --- X chromosome --- females --- FMR1 --- anxiety --- avoidance --- cognition --- behavior --- brain --- Fragile X --- FMRP --- Fxr2 --- Fmr1 --- fragile X syndrome --- executive function --- working memory --- set-shifting --- cognitive flexibility --- inhibitory control --- attention --- planning --- processing speed --- Fragile X syndrome 1 --- Fragile X-associated Tremor/Ataxia Syndrome 2 --- CRISPR 3 --- Trinucleotide Repeat 4 --- Gene editing --- fragile X syndrome --- FMR1 gene --- voice of the person --- voice of the patient --- characteristics that have the greatest impact --- developmental disorders --- fragile X syndrome --- language development --- automated vocal analysis --- adeno-associated virus --- autism spectrum disorders --- cerebral spinal fluid --- fragile X mental retardation protein --- neurodevelopmental disorders --- viral vector --- fragile X syndrome --- gene reactivation --- RNA:DNA hybrid --- FMRP --- histone methylation --- DNA methylation --- FMR1 --- PRC2 --- fragile X syndrome --- unstable repeat diseases --- epigenetic gene silencing --- DNA methylation --- repeat instability --- pluripotent stem cells --- CGG Repeat Expansion Disease --- DNA instability --- expansion --- contraction --- mismatch repair (MMR) --- base excision repair (BER) --- transcription coupled repair (TCR) --- double-strand break repair (DSBR) --- Non-homologous end-joining (NHEJ) --- mosaicism --- protein synthesis --- Fragile X Syndrome --- biomarker --- iPSC --- fibroblast --- lymphoblast --- fragile X syndrome --- molecular biomarkers --- FMR1 --- FMRP --- intellectual disability --- Fmr1 KO mouse --- ASD --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search
-->