Search results: Found 2

Listing 1 - 2 of 2
Sort by
Protein Phosphorylation in Health and Disease

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199006 Year: Pages: 122 DOI: 10.3389/978-2-88919-900-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Genetics
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Protein phosphorylation is one of the most abundant reversible post-translational modifications in eukaryotes. It is involved in virtually all cellular processes by regulating protein function, localization and stability and by mediating protein-protein interactions. Furthermore, aberrant protein phosphorylation is implicated in the onset and progression of human diseases such as cancer and neurodegenerative disorders. In the last years, tens of thousands of in vivo phosphorylation events have been identified by large-scale quantitative phospho-proteomics experiment suggesting that a large fraction of the proteome might be regulated by phosphorylation. This data explosion is increasingly enabling the development of computational approaches, often combined with experimental validation, aiming at prioritizing phosphosites and assessing their functional relevance. Some computational approaches also address the inference of specificity determinants of protein kinases/phosphatases and the identification of phosphoresidue recognition domains. In this context, several challenging issues are still open regarding phosphorylation, including a better understanding of the interplay between phosphorylation and allosteric regulation, agents and mechanisms disrupting or promoting abnormal phosphorylation in diseases, the identification and modulation of novel phosphorylation inhibitors, and so forth. Furthermore, the determinants of kinase and phosphatase recognition and binding specificity are still unknown in several cases, as well as the impact of disease mutations on phosphorylation-mediated signaling. The articles included in this Research Topic illustrate the very diverse aspects of phosphorylation, ranging from structural changes induced by phosphorylation to the peculiarities of phosphosite evolution. Some also provide a glimpse into the huge complexity of phosphorylation networks and pathways in health and disease, and underscore that a deeper knowledge of such processes is essential to identify disease biomarkers, on one hand, and design more effective therapeutic strategies, on the other.

Dual Specificity Phosphatases: From Molecular Mechanisms to Biological Function

Authors: ---
ISBN: 9783039216888 / 9783039216895 Year: Pages: 240 DOI: 10.3390/books978-3-03921-689-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Dual specificity phosphatases (DUSPs) constitute a heterogeneous group of protein tyrosine phosphatases with the ability to dephosphorylate Ser/Thr and Tyr residues from proteins, as well as from other non-proteinaceous substrates including signaling lipids. DUSPs include, among others, MAP kinase (MAPK) phosphatases (MKPs) and small-size atypical DUSPs. MKPs are enzymes specialized in regulating the activity and subcellular location of MAPKs, whereas the function of small-size atypical DUSPs seems to be more diverse. DUSPs have emerged as key players in the regulation of cell growth, differentiation, stress response, and apoptosis. DUSPs regulate essential physiological processes, including immunity, neurobiology and metabolic homeostasis, and have been implicated in tumorigenesis, pathological inflammation and metabolic disorders. Accordingly, alterations in the expression or function of MKPs and small-size atypical DUSPs have consequences essential to human disease, making these enzymes potential biological markers and therapeutic targets. This Special Issue covers recent advances in the molecular mechanisms and biological functions of MKPs and small-size atypical DUSPs, and their relevance in human disease.

Listing 1 - 2 of 2
Sort by
Narrow your search
-->