Search results: Found 3

Listing 1 - 3 of 3
Sort by
Advanced Flame Retardant Materials

Author:
ISBN: 9783039283507 9783039283514 Year: Pages: 190 DOI: 10.3390/books978-3-03928-351-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Recent disasters caused by the spread of fire in buildings and in transportations remind us of the importance of fire protection. Using flame-retardant materials is one important element of the firefighting strategy, which aims to prevent fire development and propagation. These materials are used in different applications, such as in textiles, coatings, foams, furniture, and cables. The development of more efficient and environmentally friendly flame-retardant additives is an active multidisciplinary approach that has attracted a great deal of interest. Studies have aimed at the development of new, sustainable, and flame-retardant additives/materials, providing high performance and low toxicity. Also studied were their properties during ageing and recycling, as well as modeling physical and chemical processes occuring before ignition and during their combustion. The development of sustainable flame retardants and understanding their modes of action provide a strong link between these topics and cover many fields from organic chemistry, materials engineering, and toxicology, to physics and mathematics.

Intrinsically Biocompatible Polymer Systems

Author:
ISBN: 9783039284207 9783039284214 Year: Pages: 270 DOI: 10.3390/books978-3-03928-421-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Biocompatibility refers to the ability of a biomaterial to perform its desired function with respect to a medical therapy, without eliciting any undesirable local or systemic effects in the recipient or beneficiary of that therapy, but generating the most appropriate beneficial cellular or tissue response in that specific situation, and optimizing the clinically relevant performance of that therapy, which reflects current developments in the area of intrinsically biocompatible polymer systems. Polymeric biomaterials are presently used as, for example, long-term implantable medical devices, degradable implantable systems, transient invasive intravascular devices, and, recently, as tissue engineering scaffolds. This Special Issue welcomes full papers and short communications highlighting the aspects of the current trends in the area of intrinsically biocompatible polymer systems.

Keywords

antimicrobial peptides --- biodegradable polymers --- biocompatible polymers --- drug delivery systems --- controlled release --- citropin --- temporin --- ionic liquids --- chitooligosaccharide --- polyurethane --- biodegradability --- physicochemical properties --- hemocompatibility --- biological activity --- crosslinking --- drug delivery --- cosmetic --- food-supplement --- functionalization --- hyaluronan applications --- hyaluronan derivatives --- hyaluronan synthases --- hyaluronic acid --- hyaluronidases --- physico-chemical properties --- cyclohexanone --- ?-butyrolactone --- chloroform --- extraction --- polyhydroxyalkanoates --- PHB --- electrospraying --- biodegradable nano/microparticles --- drug delivery --- septic arthritis --- release characteristics --- biopolymers --- silk fibroin --- konjac glucomannan --- porous beads --- scaffolds --- tissue engineering --- microcarriers --- Poly (l-lactic) acid --- Chitosan --- nanohydroxyapatite --- osteoblasts --- ion-releasing materials --- shrinkage stress --- water sorption --- hydroscopic expansion --- photoelastic investigation --- enzymatic polymerization --- chemical polymerization --- poly(benzyl malate) --- biocompatible nanoparticles --- cell uptake --- cytotoxicity --- HepaRG cells --- human macrophages --- star polymers --- solution behavior --- ATRP --- SPION --- contrast agent --- MRI --- cancer diagnosis --- folate receptor --- pluronic F127 --- polylactide --- hydrolytic degradation --- mechanical properties --- PEEK copolymer synthesis --- PEEK composite --- Spine cage application --- In vitro biosafety --- degradation --- saliva --- mechanical properties --- molecular weight --- thermal properties --- activation energy of thermal decomposition --- anterior cruciate ligament reconstruction --- bone tunnel enlargement --- X-ray microtomography --- polylactide --- n/a

Advances in Polyhydroxyalkanoate (PHA) Production, Volume 2

Author:
ISBN: 9783039286409 / 9783039286416 Year: Pages: 202 DOI: 10.3390/books978-3-03928-641-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Biotechnology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Nowadays, we are witnessing highly dynamic research activities related to the intriguing field of biodegradable materials with plastic-like properties. These activities are stimulated by the strengthened public awareness of prevailing ecological issues connected to growing piles of plastic waste and increasing greenhouse gas emissions; this goes hand-in-hand with the ongoing depletion of fossil feedstocks, which are traditionally used to produce full carbon backbone polymers. Polyhydroxyalkanoate (PHA) biopolyesters, a family of plastic-like materials with versatile material properties, are increasing considered to be a future-oriented solution for diminishing these concerns. PHA production is based on renewable resources and occurs in a bio-mediated fashion through the action of living organisms. If accomplished in an optimized way, PHA production and the entire PHA lifecycle are embedded into nature´s closed cycles of carbon. Sustainable and efficient PHA production requires understanding and improvement of all the individual process steps. Holistic improvement of PHA production, applicable on an industrially relevant scale, calls for, inter alia, consolidated knowledge about the enzymatic and genetic particularities of PHA-accumulating organisms, an in-depth understanding of the kinetics of the bioprocess, the selection of appropriate inexpensive fermentation feedstocks, tailoring of PHA composition at the level of its monomeric constituents, optimized biotechnological engineering, and novel strategies for PHA recovery from biomass characterized by low energy and chemical requirements. This Special Issue represents a comprehensive compilation of articles in which these individual aspects have been addressed by globally recognized experts.

Keywords

polyhydroxyalkanoate (PHA), bioprocess design --- carbon dioxide --- cyanobacteria --- upstream processing --- Archaea --- bioeconomy --- biopolyester --- downstream processing --- extremophiles --- haloarchaea --- Haloferax --- halophiles --- polyhydroxyalkanoates --- salinity --- polyhydroxyalkanoates --- terpolymer --- P(3HB-co-3HV-co-4HB) --- Cupriavidus malaysiensis --- polyhydroxyalkanoates --- biomedicine --- biomaterials --- Poly(3-hydroxybutyrate) --- tissue engineering --- wound healing --- delivery system --- poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHVB) --- poly(3-hydroxybutyrate-co-4-hydroxybutyrate) --- bubble column bioreactor --- COMSOL --- microorganism --- PHB --- simulation --- polyhydroxyalkanoate --- PHA --- process analytical technologies --- PAT --- plant oil --- high-cell-density fed-batch --- photon density wave spectroscopy --- PDW --- Ralstonia eutropha --- Cupriavidus necator --- on-line --- in-line --- polyhydroxyalkanoates --- fed-batch --- productivity --- Pseudomonas --- bioreactor --- microaerophilic --- PHA --- viscosity --- non-Newtonian fluid --- fed-batch fermentation --- oxygen transfer --- Pseudomonas putida --- medium-chain-length polyhydroxyalkanoate (mcl-PHA) --- alginate --- biosurfactants --- biopolymer --- Pseudomonas --- blends --- film --- polyhydroxyalkanoates processing --- electrospinning --- additive manufacturing --- selective laser sintering --- fused deposition modeling --- computer-aided wet-spinning --- polyhydroxybutyrate --- tequila bagasse --- hydrolysate detoxification --- activated charcoal --- phenolic compounds --- biomedical application --- cyanobacteria --- feedstocks --- gaseous substrates --- haloarchaea --- high cell density cultivation --- in-line monitoring --- PHA composition --- PHA processing --- polyhydroxyalkanoate --- process engineering --- process simulation --- Pseudomonas sp. --- rheology --- terpolyester --- waste streams

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

english (2)

eng (1)


Year
From To Submit

2020 (3)