Search results: Found 3

Listing 1 - 3 of 3
Sort by
The ventricular-subventricular zone: a source of oligodendrocytes in the adult brain

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192687 Year: Pages: 104 DOI: 10.3389/978-2-88919-268-7 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Demyelinating diseases are characterized by an extensive loss of oligodendrocytes and myelin sheaths from axolemma, which commonly result in disability in young adults. To date, there is no effective treatment against these neurological disorders. In the adult brain, there are neural stem cells (NSCs) that reside within a niche denominated ventricular-subventricular zone (V-SVZ) in the lateral wall of the cerebral ventricles. NSCs give rise to neurons and oligodendrocytes that help preserve cellular homeostasis. Growing evidence indicates that V-SVZ progenitor cells may represent an endogenous source of oligodendrocytes that can be useful to treat demyelinating diseases. This e-Book collected the most recent evidence regarding the mechanisms that modulate the proliferation, migration, quiescence, cell-fate choices and survival of oligodendrocyte precursors generated in the V-SVZ. Herein, we compiled information about the role of Sonic hedgehog, NMDA receptors, ErbB proteins, hemopressin, erythropoietin, osmolarity and microglia in the oligodendrocyte production. Some chapters also describe the role of oligodendrocyte precursors in the preservation of cellular homeostasis, aging and white matter repair. All these information is presented as novel research findings, short communications, and review articles, which were written by experts in the field of oligodendrocyte generation, myelin production and white matter re-myelination.

Adult neurogenesis twenty years later: physiological function versus brain repair

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194940 Year: Pages: 120 DOI: 10.3389/978-2-88919-494-0 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2015-11-16 15:44:59
License:

Loading...
Export citation

Choose an application

Abstract

The discovery that mammalian brains contain neural stem cells which perform adult neurogenesis - the production and integration of new neurons into mature neural circuits - has provided a fully new vision of neural plasticity. On a theoretical basis, this achievement opened new perspectives for therapeutic approaches in restorative and regenerative neurology. Nevertheless, in spite of striking advancement concerning the molecular and cellular mechanisms which allow and regulate the neurogenic process, its exploitation in mammals for brain repair strategies remains unsolved. In non-mammalian vertebrates, adult neurogenesis also contributes to brain repair/regeneration. In mammals, neural stem cells do respond to pathological conditions in the so called "reactive neurogenesis", yet without substantial regenerative outcome. Why, even in the presence of stem cells in the brain, we lack an effective reparative outcome in terms of regenerative neurology, and which factors hamper the attainment of this goal? Essentially, what remains unanswered is the question whether (and how) physiological functions of adult neurogenesis in mammals can be exploited for brain repair purposes.

Crosstalk between the osteogenic and neurogenic stem cell niches: how far are they from each other?

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197774 Year: Pages: 102 DOI: 10.3389/978-2-88919-777-4 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Somatic stem cells reside in definite compartments, known as “niches”, within developed organs and tissues, being able to renew themselves, differentiate and ensure tissue maintenance and repair. In contrast with the original dogmatic distinction between renewing and non-renewing tissues, somatic stem cells have been found in almost every human organ, including brain and heart. The adult bone marrow, in particular, houses a complex multifunctional niche comprising hemopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), that intensely interact. HSCs represent the common precursors of all mature blood cells. MSCs are instead able to differentiate along multiple mesodermal lineages and are believed to represent the key somatic stem cell within the skeletogenic niche, being conceptually able to produce any tissue included within a mature skeletal segment (bone, cartilage, blood vessels, adipose tissue, and supporting connective stroma). Despite this high plasticity, the claim that MSCs could be capable of transdifferentiation along non-mesodermal lineages, including neurons, has been strongly argued. Adult osteogenic and neurogenic niches display wide differences: embryo origin, microenvironment, progenitors’ lifespan, lineages of supporting cells. Although similar pathways may be involved, it is hard to believe that the osteogenic and neurogenic lineages can share functional features. The outbreaking research achievements in the field of regenerative medicine, along with the pressing need for effective innovative tools for the treatment of neurodegeneration and neurologic disorders, have been forcing experimental clinical applications, which, despite their scientific weakness, have recently stimulated the public opinion. Based on this contemporary background, this Research Topic wish to provide an in-depth revision of the state of the art on relevant scientific milestones addressing the differences and possible interconnections and overlaps, between the osteogenic and the neurogenic niches. Dissertations on both basic research and clinical aspects, along with ethical and regulatory issues on the use of somatic stem cells for in vivo transplantation, have been covered.

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

Frontiers Media SA (3)


License

CC by (3)


Language

english (3)


Year
From To Submit

2016 (1)

2015 (1)

2014 (1)