Search results:
Found 6
Listing 1  6 of 6 
Sort by

Choose an application
The many technical and computational problems that appear to be constantly emerging in various branches of physics and engineering beg for a more detailed understanding of the fundamental mathematics that serves as the cornerstone of our way of understanding natural phenomena. The purpose of this Special Issue was to establish a brief collection of carefully selected articles authored by promising young scientists and the world's leading experts in pure and applied mathematics, highlighting the stateoftheart of the various research lines focusing on the study of analytical and numerical mathematical methods for pure and applied sciences.
ultraparabolic equation  ultradiffusion process  probabilistic representation  mathematical finance  linear elastostatics  layer potentials  fredholmian operators  fractional differential equations  fractional derivative  Abeltype integral  time delay  distributed lag  gamma distribution  macroeconomics  Keynesian model  integral transforms  Laplace integral transform  transmutation operator  generating operator  integral equations  differential equations  operational calculus of Mikusinski type  Mellin integral transform  fractional derivative  fractional integral  Mittag–Leffler function  Riemann–Liouville derivative  Caputo derivative  Grünwald–Letnikov derivative  spacetime fractional diffusion equation  fractional Laplacian  subordination principle  MittagLeffler function  Bessel function  exterior calculus  exterior algebra  electromagnetism  Maxwell equations  differential forms  tensor calculus  Fourier Theory  DFT in polar coordinates  polar coordinates  multidimensional DFT  discrete Hankel Transform  discrete Fourier Transform  Orthogonality  multispecies biofilm  biosorption  free boundary value problem  heavy metals toxicity  method of characteristics  relativistic diffusion equation  Caputo fractional derivatives of a function with respect to another function  BesselRiesz motion  Mittag–Leffler function  matrix function  Schur decomposition  Laplace transform  fractional calculus  central limit theorem  anomalous diffusion  stable distribution  fractional calculus  power law  n/a
Choose an application
This book is focused on fractional order systems. Historically, fractional calculus has been recognized since the inception of regular calculus, with the first written reference dated in September 1695 in a letter from Leibniz to L’Hospital. Nowadays, fractional calculus has a wide area of applications in areas such as physics, chemistry, bioengineering, chaos theory, control systems engineering, and many others. In all those applications, we deal with fractional order systems in general. Moreover, fractional calculus plays an important role even in complex systems and therefore allows us to develop better descriptions of realworld phenomena. On that basis, fractional order systems are ubiquitous, as the whole real world around us is fractional. Due to this reason, it is urgent to consider almost all systems as fractional order systems.
anomalous diffusion  complexity  magnetic resonance imaging  fractional calculus  fractional complex networks  adaptive control  pinning synchronization  timevarying delays  impulses  reaction–diffusion terms  fractional calculus  mass absorption  diffusionwave equation  Caputo derivative  harmonic impact  Laplace transform  Fourier transform  MittagLeffler function  fractional calculus  fractionalorder system  long memory  time series  Hurst exponent  fractional  control  PID  parameter  meaning  audio signal processing  linear prediction  fractional derivative  musical signal  optimal randomness  swarmbased search  cuckoo search  heavytailed distribution  global optimization
Choose an application
In order to measure and quantify the complex behavior of realworld systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and nonuniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineeringoriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and antisynchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed.
multitime scale fractional stochastic differential equations  fractional Brownian motion  fractional stochastic partial differential equation  analytical solution  nonautonomous (autonomous) dynamical system  topological entropy  (asymptotical) focal entropy point  disturbation  mdimensional manifold  geometric nonlinearity  Bernoulli–Euler beam  colored noise  noise induced transitions  true chaos  Lyapunov exponents  wavelets  Lyapunov exponents  Wolf method  Rosenstein method  Kantz method  neural network method  method of synchronization  Benettin method  Fourier spectrum  Gauss wavelets  fractional calculus  Adomian decomposition  Mittag–Leffler function  descriptor fractional linear systems  regular pencils  Schur factorization  hyperchaotic system  selfsynchronous stream cipher  permutation entropy  image encryption  wavelet transform  product MValgebra  partition  Tsallis entropy  conditional Tsallis entropy  dynamical system  discrete chaos  discrete fractional calculus  hidden attractors  approximate entropy  stabilization  Information transfer  continuous flow  discrete mapping  Lorenz system  Chua’s system  deterministic chaos  random number generator  unbounded chaos  bounded chaos  phaselocked loop  Gaussian white noise  n/a
Choose an application
Fractional calculus provides the possibility of introducing integrals and derivatives of an arbitrary order in the mathematical modelling of physical processes, and it has become a relevant subject with applications to various fields, such as anomalous diffusion, propagation in different media, and propogation in relation to materials with different properties. However, many aspects from theoretical and practical points of view have still to be developed in relation to models based on fractional operators. This Special Issue is related to new developments on different aspects of fractional differential equations, both from a theoretical point of view and in terms of applications in different fields such as physics, chemistry, or control theory, for instance. The topics of the Issue include fractional calculus, the mathematical analysis of the properties of the solutions to fractional equations, the extension of classical approaches, or applications of fractional equations to several fields.
fractional qdifference equation  existence and uniqueness  positive solutions  fixed point theorem on mixed monotone operators  fractional pLaplacian  Kirchhofftype equations  fountain theorem  modified functional methods  Moser iteration method  fractionalorder neural networks  delays  distributed delays  impulses  Mittag–Leffler synchronization  Lyapunov functions  Razumikhin method  generalized convexity  bvex functions  subbsconvex functions  oscillation  nonlinear differential system  delay differential system  ?fractional derivative  positive solution  fractional thermostat model  fixed point index  dependence on a parameter  Hermite–Hadamard’s Inequality  Convex Functions  Powermean Inequality  Jenson Integral Inequality  Riemann—Liouville Fractional Integration  Laplace Adomian Decomposition Method (LADM)  NavierStokes equation  Caputo Operator  fractionalorder system  model order reduction  controllability and observability Gramians  energy inequality  integral conditions  fractional wave equation  existence and uniqueness  initial boundary value problem  conformable fractional derivative  conformable partial fractional derivative  conformable double Laplace decomposition method  conformable Laplace transform  singular one dimensional coupled Burgers’ equation
Choose an application
Researches and investigations involving the theory and applications of integral transforms and operational calculus are remarkably widespread in many diverse areas of the mathematical, physical, chemical, engineering and statistical sciences.
highly oscillatory  convolution quadrature rule  volterra integral equation  Bessel kernel  convergence  higher order Schwarzian derivatives  Janowski starlike function  Janowski convex function  bound on derivatives  tangent numbers  tangent polynomials  Carlitztype qtangent numbers  Carlitztype qtangent polynomials  (p,q)analogue of tangent numbers and polynomials  (p,q)analogue of tangent zeta function  symmetric identities  zeros  Lommel functions  univalent functions  starlike functions  convex functions  inclusion relationships  analytic function  Hankel determinant  exponential function  upper bound  nonlinear boundary value problems  fractionalorder differential equations  RiemannStieltjes functional integral  LiouvilleCaputo fractional derivative  infinitepoint boundary conditions  advanced and deviated arguments  existence of at least one solution  Fredholm integral equation  Schauder fixed point theorem  Hölder condition  generalized Kuramoto–Sivashinsky equation  modified Kudryashov method  exact solutions  Maple graphs  analytic function  Hadamard product (convolution)  partial sum  Srivastava–Tomovski generalization of Mittag–Leffler function  subordination  differential equation  differential inclusion  Liouville–Caputotype fractional derivative  fractional integral  existence  fixed point  Bernoulli spiral  Grandi curves  Chebyshev polynomials  pseudoChebyshev polynomials  orthogonality property  symmetric  encryption  password  hash  cryptography  PBKDF  q–Bleimann–Butzer–Hahn operators  (p,q)integers  (p,q)Bernstein operators  (p,q)Bleimann–Butzer–Hahn operators  modulus of continuity  rate of approximation  Kfunctional  HurwitzLerch zeta function  generalized functions  analytic number theory  ?generalized HurwitzLerch zeta functions  derivative properties  series representation  basic hypergeometric functions  generating functions  qpolynomials  analytic functions  Mittag–Leffler functions  starlike functions  convex functions  Hardy space  vibrating string equation  initial conditions  spectral decomposition  regular solution  the uniqueness of the solution  the existence of a solution  analytic  ?convex function  starlike function  stronglystarlike function  subordination  q Sheffer–Appell polynomials  generating relations  determinant definition  recurrence relation  q Hermite–Bernoulli polynomials  q Hermite–Euler polynomials  q Hermite–Genocchi polynomials  Volterra integral equations  highly oscillatory Bessel kernel  Hermite interpolation  direct Hermite collocation method  piecewise Hermite collocation method  differential operator  qhypergeometric functions  meromorphic function  Mittag–Leffler function  Hadamard product  differential subordination  starlike functions  Bell numbers  radius estimate  (p, q)integers  Dunkl analogue  generating functions  generalization of exponential function  Szász operator  modulus of continuity  function spaces and their duals  distributions  tempered distributions  Schwartz testing function space  generalized functions  distribution space  wavelet transform of generalized functions  Fourier transform  analytic function  subordination  Dziok–Srivastava operator  nonlinear boundary value problem  nonlocal  multipoint  multistrip  existence  Ulam stability  functions of bounded boundary and bounded radius rotations  subordination  functions with positive real part  uniformly starlike and convex functions  analytic functions  univalent functions  starlike and qstarlike functions  qderivative (or qdifference) operator  sufficient conditions  distortion theorems  Janowski functions  analytic number theory  ?generalized Hurwitz–Lerch zeta functions  derivative properties  recurrence relations  integral representations  Mellin transform  natural transform  Adomian decomposition method  Caputo fractional derivative  generalized mittagleffler function  analytic functions  Hadamard product  starlike functions  qderivative (or qdifference) operator  Hankel determinant  qstarlike functions  fuzzy volterra integrodifferential equations  fuzzy general linear method  fuzzy differential equations  generalized Hukuhara differentiability  spectrum symmetry  DCT  MFCC  audio features  anuran calls  analytic functions  convex functions  starlike functions  strongly convex functions  strongly starlike functions  uniformly convex functions  Struve functions  truncatedexponential polynomials  monomiality principle  generating functions  Apostoltype polynomials and Apostoltype numbers  Bernoulli, Euler and Genocchi polynomials  Bernoulli, Euler, and Genocchi numbers  operational methods  summation formulas  symmetric identities  Euler numbers and polynomials  qEuler numbers and polynomials  HurwitzEuler eta function  multiple HurwitzEuler eta function  higher order qEuler numbers and polynomials  (p, q)Euler numbers and polynomials of higher order  symmetric identities  symmetry of the zero
Choose an application
NonNewtonian (nonlinear) fluids are common in nature, for example, in mud and honey, but also in many chemical, biological, food, pharmaceutical, and personal care processing industries. This Special Issue of Fluids is dedicated to the recent advances in the mathematical and physical modeling of nonlinear fluids with industrial applications, especially those concerned with CFD studies. These fluids include traditional nonNewtonian fluid models, electro or magnetorheological fluids, granular materials, slurries, drilling fluids, polymers, blood and other biofluids, mixtures of fluids and particles, etc.
inhomogeneous fluids  nonnewtonian fluids  lubrication approximation (76A05, 76D08, 76A20)  particle interaction  viscoplastic fluid  Bingham fluid  computational fluid dynamics  porous media  convection  Bingham fluid  yield stress  channel flow  powerlaw fluid  sheardependent viscosity  Reynolds equation  lubrication approximation  liddriven cavity  projection method  shearthinning  aspect ratio  Re numbers  Brinkman equation  viscosity ratio  first and secondorder slip  similarity transformation  porous medium  generalised simplified PTT  PhanThien–Tanner (PTT) model  Mittag–Leffler  Couette flow  Poiseuille–Couette flow  nonisothermal flows  creeping flows  viscous fluid  optimal control  boundary control  pressure boundary conditions  weak solution  existence theorem  marginal function  hemoglobin  biological capacitor  nonequilibrium thermodynamics  hemoglobe capacitor  thermodynamic capacitor  smoothed particle hydrodynamics (SPH)  meshless  fluidsolid interaction (FSI)  membrane  rupture  SPHFEM  stokesian dynamics  dense suspension  rheology  bubble suspension  suspension viscosity  Gamma densitometer  high viscosity oil  slug translational velocity  closure relationship  wormlike micellar solutions (WMS)  enhanced oil recovery (EOR)  chemical EOR (cEOR)  viscoelastic surfactants (VES)  nonlinear fluids  variable viscosity  natural convection  convectiondiffusion  buoyancy force  lubrication  suspensions  viscoplastic fluids  cement  biofluids  oil recovery  porous media
Listing 1  6 of 6 
Sort by
