Search results:
Found 4
Listing 1 - 4 of 4 |
Sort by
|
Choose an application
This Special Issue "Differential Geometrical Theory of Statistics" collates selected invited and contributed talks presented during the conference GSI'15 on "Geometric Science of Information" which was held at the Ecole Polytechnique, Paris-Saclay Campus, France, in October 2015 (Conference web site: http://www.see.asso.fr/gsi2015).
Entropy --- Coding Theory --- Maximum entropy --- Information geometry --- Computational Information Geometry --- Hessian Geometry --- Divergence Geometry --- Information topology --- Cohomology --- Shape Space --- Statistical physics --- Thermodynamics
Choose an application
As the ultimate information processing device, the brain naturally lends itself to being studied with information theory. The application of information theory to neuroscience has spurred the development of principled theories of brain function, and has led to advances in the study of consciousness, as well as to the development of analytical techniques to crack the neural code—that is, to unveil the language used by neurons to encode and process information. In particular, advances in experimental techniques enabling the precise recording and manipulation of neural activity on a large scale now enable for the first time the precise formulation and the quantitative testing of hypotheses about how the brain encodes and transmits the information used for specific functions across areas. This Special Issue presents twelve original contributions on novel approaches in neuroscience using information theory, and on the development of new information theoretic results inspired by problems in neuroscience.
neural network --- Potts model --- latching --- recursion --- functional connectome --- graph theoretical analysis --- eigenvector centrality --- orderness --- network eigen-entropy --- information entropy production --- discrete Markov chains --- spike train statistics --- Gibbs measures --- maximum entropy principle --- pulse-gating --- channel capacity --- neural coding --- feedforward networks --- neural information propagation --- information theory --- mutual information decomposition --- synergy --- redundancy --- integrated information theory --- integrated information --- minimum information partition --- submodularity --- Queyranne’s algorithm --- consciousness --- maximum entropy --- higher-order correlations --- neural population coding --- Ising model --- brain network --- complex networks --- connectome --- information theory --- graph theory --- free-energy principle --- internal model hypothesis --- unconscious inference --- infomax principle --- independent component analysis --- principal component analysis --- goodness --- categorical perception --- perceptual magnet --- information theory --- perceived similarity --- mutual information --- synergy --- redundancy --- neural code --- hippocampus --- entorhinal cortex --- navigation --- neural code --- representation --- decoding --- spike-time precision --- discrimination --- noise correlations --- information theory --- mismatched decoding --- information theory --- neuroscience
Choose an application
Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Reacutenyi Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.
complexity --- streamflow --- water level --- composite multiscale sample entropy --- trend --- Poyang Lake basin --- four-parameter exponential gamma distribution --- principle of maximum entropy --- precipitation frequency analysis --- methods of moments --- maximum likelihood estimation --- flood frequency analysis --- generalized gamma (GG) distribution --- principle of maximum entropy (POME) --- entropy theory --- principle of maximum entropy (POME) --- GB2 distribution --- flood frequency analysis --- non-point source pollution --- ANN --- entropy weighting method --- data-scarce --- multi-events --- spatio-temporal variability --- soil water content --- entropy --- arid region --- joint entropy --- NDVI --- temperature --- precipitation --- groundwater depth --- Hei River basin --- turbulent flow --- canopy flow --- randomness --- coherent structures --- Shannon entropy --- Kolmogorov complexity --- entropy --- information transfer --- optimization --- radar --- rainfall network --- water resource carrying capacity --- forewarning model --- entropy of information --- fuzzy analytic hierarchy process --- projection pursuit --- accelerating genetic algorithm --- entropy production --- conditional entropy production --- stochastic processes --- scaling --- climacogram --- turbulence --- water resources vulnerability --- connection entropy --- changing environment --- set pair analysis --- Anhui Province --- cross-entropy minimization --- land suitability evaluation --- spatial optimization --- monthly streamflow forecasting --- Burg entropy --- configurational entropy --- entropy spectral analysis time series analysis --- entropy --- water monitoring --- network design --- hydrometric network --- information theory --- entropy applications --- hydrological risk analysis --- maximum entropy-copula method --- uncertainty --- Loess Plateau --- entropy --- water engineering --- Tsallis entropy --- principle of maximum entropy --- Lagrangian function --- probability distribution function --- flux concentration relation --- uncertainty --- information --- informational entropy --- variation of information --- continuous probability distribution functions --- confidence intervals --- precipitation --- variability --- marginal entropy --- crop yield --- Hexi corridor --- flow duration curve --- Shannon entropy --- entropy parameter --- modeling --- spatial and dynamics characteristic --- hydrology --- tropical rainfall --- statistical scaling --- Tsallis entropy --- multiplicative cascades --- Beta-Lognormal model --- rainfall forecast --- cross entropy --- ant colony fuzzy clustering --- combined forecast --- information entropy --- mutual information --- kernel density estimation --- ENSO --- nonlinear relation --- scaling laws --- power laws --- water distribution networks --- robustness --- flow entropy --- entropy theory --- frequency analysis --- hydrometeorological extremes --- Bayesian technique --- rainfall --- entropy ensemble filter --- ensemble model simulation criterion --- EEF method --- bootstrap aggregating --- bagging --- bootstrap neural networks --- El Niño --- ENSO --- neural network forecast --- sea surface temperature --- tropical Pacific --- entropy --- cross elasticity --- mean annual runoff --- water resources --- resilience --- quaternary catchment --- complement --- substitute --- entropy theory --- complex systems --- hydraulics --- hydrology --- water engineering --- environmental engineering
Choose an application
Imaging and analysis are widely involved in various research fields, including biomedical applications, medical imaging and diagnosis, computer vision, autonomous driving, and robot controls. Imaging and analysis are now facing big changes regarding intelligence, due to the breakthroughs of artificial intelligence techniques, including deep learning. Many difficulties in image generation, reconstruction, de-noising skills, artifact removal, segmentation, detection, and control tasks are being overcome with the help of advanced artificial intelligence approaches. This Special Issue focuses on the latest developments of learning-based intelligent imaging techniques and subsequent analyses, which include photographic imaging, medical imaging, detection, segmentation, medical diagnosis, computer vision, and vision-based robot control. These latest technological developments will be shared through this Special Issue for the various researchers who are involved with imaging itself, or are using image data and analysis for their own specific purposes.
image inspection --- non-referential method --- feature extraction --- fault pattern learning --- weighted kernel density estimation (WKDE) --- rail surface defect --- UAV image --- defect detection --- gray stretch maximum entropy --- image enhancement --- defect segmentation --- semi-automatic segmentation --- MR spine image --- vertebral body --- graph-based segmentation --- correlation --- surface defect of steel sheet --- image segmentation --- saliency detection --- low-rank and sparse decomposition --- intervertebral disc --- segmentation --- convolutional neural network --- fine grain segmentation --- U-net --- deep learning --- magnetic resonance image --- lumbar spine --- image adjustment --- colorfulness --- contrast --- sharpness --- high dynamic range --- local registration --- iterative closest points --- multimodal medical image registration --- machine vision --- point cloud registration --- greedy projection triangulation --- local correlation --- three-dimensional imaging --- optimization arrangement --- cavitation bubble --- water hydraulic valve --- defect inspection --- image processing --- feature extraction --- classification methods --- medical image registration --- image alignment in medical images --- misalignment correction in MRI --- midsagittal plane extraction --- symmetry detection --- PCA --- conformal mapping --- mesh parameterization --- mesh partitioning --- pixel extraction --- texture mapping --- image analysis --- image retrieval --- spatial information --- image classification --- computer vision --- image restoration --- motion deburring --- image denoising --- sparse feedback --- Image processing --- segmentation --- spline --- grey level co-occurrence matrix --- gradient detection --- threshold selection --- OpenCV --- machine learning --- transfer learning --- Inception-v3 --- geological structure images --- convolutional neural networks --- image segmentation --- active contour model --- level set --- signed pressure force function --- image segmentation --- deep learning --- synthetic aperture radar (SAR) --- oil slicks --- segnet --- pectus excavatum --- nuss procedure --- patient-specific nuss bar --- minimally invasive surgery --- computerized numerical control bending machine --- computer-aided design --- computer-aided manufacturing --- statistical body shape model --- self-intersection penalty term --- 3D pose estimation --- 3D semantic mapping --- incrementally probabilistic fusion --- CRF regularization --- road scenes --- deep learning --- medical image classification --- additional learning --- CT image --- automatic training --- GoogLeNet --- intelligent evaluation --- automated cover tests --- deviation of strabismus --- pupil localization --- shape from focus --- wear measurement --- sprocket teeth --- normal distribution operator image filtering --- adaptive evaluation window --- reverse engineering --- human parsing --- depth-estimation --- computational efficiency --- capacity optimization --- underwater visual localization method --- line segment features --- PL-SLAM --- face sketch synthesis --- face sketch recognition --- joint training model --- data imbalance --- Contrast Tomography (CT) --- pre-training strategy --- segmentation --- super-resolution --- dual-channel --- residual block --- convolutional kernel parameter --- long-term and short-term memory blocks --- n/a
Listing 1 - 4 of 4 |
Sort by
|