Search results: Found 15

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Magnesium Intake and Human Health

Authors: ---
ISBN: 9783038973348 9783038973355 Year: Pages: 182 DOI: 10.3390/books978-3-03897-335-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Cardiovascular
Added to DOAB on : 2018-11-16 10:43:14
License:

Loading...
Export citation

Choose an application

Abstract

ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms.[Magnesium is universally recognized as an essential nutrient for human life and health. Indeed, magnesium plays an important physiologic role in every organ of the human body. Disturbances of Mg homeostasis have been implicated in the pathophysiology of several diseases, and Mg supplementation has been evaluated in numerous large-scale clinical trials. The World Health Organization has listed magnesium as among those essential nutrients that are consumed in suboptimal amounts by the general population. In particular, this occurs in Western ("Westernized") countries, where a modest to mild Mg2+ deficiency is thought to be common. The consequences of suboptimal Mg intake are largely unknown. A deeper understanding of the link between magnesium intake, its systemic homeostasis, and human pathophysiology is therefore much needed. Here, we have invited the experts to contribute original research or review articles that may help elucidate the pathophysiology of Mg and its underlying molecular mechanisms.]

Magnesium in the Central Nervous System

Authors: ---
ISBN: 9780987073051 Year: Pages: 356 DOI: 10.1017/UPO9780987073051 Language: English
Publisher: University of Adelaide Press
Subject: Medicine (General)
Added to DOAB on : 2012-05-15 03:00:19
License: University of Adelaide Press

Loading...
Export citation

Choose an application

Abstract

Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium in particular remains elusive, largely because intracelluar levls are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism.&#xD;&#xD;There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration.&#xD;&#xD;This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesium’s involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behaviour.&#xD;&#xD;It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesium’s role in biological systems that has inspired the collation of this volume of work.

Biodegradable Metals

Author:
ISBN: 9783038973867 9783038973874 Year: Pages: 200 DOI: 10.3390/books978-3-03897-387-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General) --- Chemical Engineering
Added to DOAB on : 2018-12-06 10:15:09
License:

Loading...
Export citation

Choose an application

Abstract

The interest in biocompatible and biodegradable metals, such as magnesium, is mainly related to their potential use as structural material for orthopedic and cardiovascular applications where a temporary medical device is required. However, in the case of magnesium, in vivo experiments have clearly shown that the corrosion degradation rate of magnesium and its alloys is too high and, hence, results in producing gas cavities that can promote the danger of gas embolism, tissue separation, and premature loss of mechanical integrity. The aim of this Special Issue on Biodegradable Metals is to explore and introduce innovative strategies to overcome the current limitations of magnesium.

On the diverse bonding situations in nanostructures : an ab initio computational study

Author:
ISBN: 9783866444508 Year: Pages: VIII, 131 p. DOI: 10.5445/KSP/1000013975 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Chemistry (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

This computational study investigates diverse bonding situations in nanostructures (carbon nanotubes, fullerenes, metal compounds) spanning a broad range of energies. Weak, dispersive interactions and covalent metal-ligand and metal-metal bonding are examined. The results of efficient density functional calculations are compared to those of correlated wavefunction calculations on model systems. This rigorous validation is crucial in evaluating the balance between computational cost and accuracy.

3D Printing of Metals

Author:
ISBN: 9783038425915 9783038425922 Year: Pages: VIII, 156 DOI: 10.3390/books978-3-03842-592-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2017-12-06 12:54:59
License:

Loading...
Export citation

Choose an application

Abstract

Three-dimensional printing is a futuristic technology capable of transforming the ways in which we make components and devices. It is almost certain that this technique will find its niche in the manufacturing sector in the very near future. In view of the growing importance of 3D printing, this book addresses key issues related to emerging science and technology in this area. Detailed and informative articles are presented in relation to a wide variety of materials, including those based on critical engineering metals such as aluminum, magnesium, titanium and composites. Advances in various techniques, such as electron beam melting and selective laser melting are discussed. Of key importance in the area of materials science is the end properties of the materials following processing. Accordingly, the articles presented critically discuss the effects of microstructural features such as porosity, forming defects and the heat treatment induced effects on the mechanical properties. Applications covered in these articles are targeted at the aerospace, automobile, defense and aerospace sectors. Overall, the information presented in this book is of significant importance for academic and industrial-based researchers who wish to inform themselves regarding this upcoming highly promising manufacturing technique.

Scientific and Engineering Progress on Aluminum-Based Light-Weight Materials: Research Reports from the German Collaborative Research Center 692

Author:
ISBN: 9783038971962 9783038971979 Year: Pages: 196 DOI: 10.3390/books978-3-03897-197-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Engineering
Added to DOAB on : 2018-09-21 10:25:03
License:

Loading...
Export citation

Choose an application

Abstract

Aluminum-based light-weight materials offer great potential for novel engineering applications, particularly when they are optimized to exhibit high strength and yet provide sufficient reliability. The last decade has thus seen substantial activity in the research fields of high-strength aluminum alloys and aluminum-based composite materials.For twelve years, backed by solid funding from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), scientists of the Collaborative Research Center, “High-strength aluminum-based light-weight materials for safety components” (SFB 692) at TU Chemnitz, Germany, have contributed to this research area. Our research efforts have been focused on three main areas: ultrafine-grained aluminum alloys produced by severe plastic deformation; aluminum matrix composites; and aluminum-based composite materials (including material combinations such as magnesium/aluminum or steel/aluminum and the corresponding joining and forming technologies). The framework of SFB 692 has served as a base for numerous scientific collaborations between scientists in the fields of materials science, design engineering, production engineering, mechanics, and even economics—in Chemnitz, and with many well-established international experts around the world.In this Special Issue, we present recent results on high-strength aluminum-based light-weight materials that also provide a broad overview of research activities in SFB 692 and elsewhere.

Thermo-Mechanical Behaviour of Structural Lightweight Alloys

Author:
ISBN: 9783039213870 / 9783039213887 Year: Pages: 128 DOI: 10.3390/books978-3-03921-388-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

The need to reduce the ecological footprint of water/land/air vehicles in this era of climate change requires pushing the limits regarding the development of lightweight structures and materials. This requires a thorough understanding of their thermomechanical behavior at several stages of the production chain. Moreover, during service, the response of lightweight alloys under the simultaneous influence of mechanical loads and temperature can determine the lifetime and performance of a multitude of structural components. The present Special Issue, comprising eight original research articles, is dedicated to disseminating current efforts around the globe aimed at advancing understanding of the thermomechanical behavior of structural lightweight alloys under processing or service conditions.

Material and Process Design for Lightweight Structures

Author:
ISBN: 9783038979586 / 9783038979593 Year: Pages: 162 DOI: 10.3390/books978-3-03897-959-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The use of lightweight structures across several industries has become inevitable in today’s world given the ever-rising demand for improved fuel economy and resource efficiency. In the automotive industry, composites, reinforced plastics, and lightweight materials, such as aluminum and magnesium are being adopted by many OEMs at increasing rates to reduce vehicle mass and develop efficient new lightweight designs. Automotive weight reduction with high-strength steel is also witnessing major ongoing efforts to design novel damage-controlled forming processes for a new generation of efficient, lightweight steel components. Although great progress has been made over the past decades in understanding the thermomechanical behavior of these materials, their extensive use as lightweight solutions is still limited due to numerous challenges that play a key role in cost competitiveness. Hence, significant research efforts are still required to fully understand the anisotropic material behavior, failure mechanisms, and, most importantly, the interplay between industrial processing, microstructure development, and the resulting properties. This Special Issue reprint book features concise reports on the current status in the field. The topics discussed herein include areas of manufacturing and processing technologies of materials for lightweight applications, innovative microstructure and process design concepts, and advanced characterization techniques combined with modeling of material’s behavior.

3D Printing of Metals

Author:
ISBN: 9783039213412 / 9783039213429 Year: Pages: 138 DOI: 10.3390/books978-3-03921-342-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

3D printing is rapidly emerging as a key manufacturing technique that is capable of serving a wide spectrum of applications, ranging from engineering to biomedical sectors. Its ability to form both simple and intricate shapes through computer-controlled graphics enables it to create a niche in the manufacturing sector. Key challenges remain, and a great deal of research is required to develop 3D printing technology for all classes of materials including polymers, metals, ceramics, and composites. In view of the growing importance of 3D manufacturing worldwide, this Special Issue aims to seek original articles to further assist in the development of this promising technology from both scientific and technological perspectives. Targeted reviews, including mini-reviews, are also welcome, as they play a crucial role in educating students and young researchers.

Structure and Mechanical Properties of Transition Group Metals, Alloys, and Intermetallic Compounds

Author:
ISBN: 9783039211463 / 9783039211470 Year: Pages: 222 DOI: 10.3390/books978-3-03921-147-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The aim of this Special Issue is to present the latest theoretical and experimental achievements concerning the mechanisms of microstructural change in metallic materials subject to different processing methods, and their effect on mechanical properties. It is my pleasure to present a series of compelling scientific papers written by scientists from the community of transition group metals, alloys, and intermetallic compounds.

Keywords

metal matrix composites --- laser metal deposition --- Inconel 625 --- additive manufacturing --- laser processing --- metal matrix composites --- Z-pin reinforcement --- delamination --- carbon fiber --- strengthening mechanisms --- severe plastic deformation (SPD) --- cross-channel extrusion (CCE) --- back pressure (BP) --- numerical simulation (FEM) --- physical modeling technique (PMT) --- metal–matrix composites (MMCs) --- carbon fiber --- mechanical properties --- z-pin reinforcement --- laminate --- titanium alloys --- high pressure torsion --- microhardness --- Cu–Ag alloy --- high-pressure torsion --- ultrafine microstructure --- phase dissolution --- microhardness --- friction stir welding --- heat treatment --- AA2519 --- microstructure --- fatigue --- fractography --- AZ91 --- magnesium alloys --- creep --- high pressure die casting --- additive manufacturing --- Ti-6Al-4V --- LENS --- mechanical characterization --- twin roll casting --- magnesium alloy --- calcium --- Mg-Zn-Al-Ca alloy --- texture --- flow curve --- processing map --- honeycomb structure --- additive manufacturing --- laser engineered net shaping --- LENS --- Ti6Al4V alloy --- energy absorption --- dynamic tests --- solidification thermal parameters --- Cu-Al-Ni-Fe bronze alloys --- hardness --- microhardness --- specific intermetallics --- MAX phase --- Ti3SiC2 --- composite --- high energy ball milling --- spark plasma sintering --- structure --- mechanical properties --- deformation behavior --- tribaloy-type alloy --- CoCrMoSi alloy coatings --- T-800 alloy --- Laves phase --- Laser Engineered Net Shaping (LENSTM) --- electron microscopy (in situ SEM) --- delamination --- metal matrix composites (MMCs) --- z-pinning

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
-->