Search results: Found 5

Listing 1 - 5 of 5
Sort by
Métiers, effort and catches of a Mediterranean small-scale coastal fishery: the case of the gulf of Lion Marine Natural Parc (Book chapter)

Book title: Eighth International Symposium “Monitoring of Mediterranean Coastal Areas. Problems and Measurement Techniques”

Authors: --- --- --- --- et al.
Book Series: Proceedings e report ISSN: 27045846 ISBN: 9788855181471 Year: Volume: 126 DOI: 10.36253/978-88-5518-147-1.57
Publisher: Firenze University Press
Subject: Forestry
Added to DOAB on : 2020-11-26 11:35:25
License:

Loading...
Export citation

Choose an application

Abstract

In the context of current fisheries crisis, this study aimed describing the characteristics of the artisanal fisheries in the Gulf of Lion Marine Natural Park located north-western Mediterranean. Catch Per Unit Effort and fishing effort were described on a spatio-temporal scale. Data were collected through questionnaires to fishers at landing sites for a one-year between 2019 and 2020. The most frequently used métiers were the hake gillnet and the sparids trammel net and gillnet, targeting two predominant species: hake (Merluccius merluccius) and gilthead seabream (Sparus aurata).

Autonomous Control of Unmanned Aerial Vehicles

Author:
ISBN: 9783039210305 9783039210312 Year: Pages: 270 DOI: 10.3390/books978-3-03921-031-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.

Advances in Mechanical Systems Dynamics

Authors: --- ---
ISBN: 9783039281886 9783039281893 Year: Pages: 236 DOI: 10.3390/books978-3-03928-189-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mechanical Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Modern dynamics was established many centuries ago by Galileo and Newton before the beginning of the industrial era. Presently, we are in the presence of the fourth industrial revolution, and mechanical systems are increasingly being integrated with electronic, electrical, and fluidic systems. This trend is present not only in the industrial environment, which will soon be characterized by the cyber-physical systems of industry 4.0, but also in other environments like mobility, health and bio-engineering, food and natural resources, safety, and sustainable living. In this context, purely mechanical systems with quasi-static behavior will become less common and the state-of-the-art will soon be represented by integrated mechanical systems, which need accurate dynamic models to predict their behavior. Therefore, mechanical system dynamics are going to play an increasingly central role. Significant research efforts are needed to improve the identification of the mechanical properties of systems in order to develop models that take non-linearity into account, and to develop efficient simulation tools. This Special Issue aims at disseminating the latest research achievements, findings, and ideas in mechanical systems dynamics, with particular emphasis on applications that are strongly integrated with other systems and require a multi-physical approach.

Nanoelectronic Materials, Devices and Modeling

Authors: ---
ISBN: 9783039212255 9783039212262 Year: Pages: 242 DOI: 10.3390/books978-3-03921-226-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

As CMOS scaling is approaching the fundamental physical limits, a wide range of new nanoelectronic materials and devices have been proposed and explored to extend and/or replace the current electronic devices and circuits so as to maintain progress with respect to speed and integration density. The major limitations, including low carrier mobility, degraded subthreshold slope, and heat dissipation, have become more challenging to address as the size of silicon-based metal oxide semiconductor field effect transistors (MOSFETs) has decreased to nanometers, while device integration density has increased. This book aims to present technical approaches that address the need for new nanoelectronic materials and devices. The focus is on new concepts and knowledge in nanoscience and nanotechnology for applications in logic, memory, sensors, photonics, and renewable energy. This research on nanoelectronic materials and devices will be instructive in finding solutions to address the challenges of current electronics in switching speed, power consumption, and heat dissipation and will be of great interest to academic society and the industry.

Keywords

UAV --- vision localization --- hierarchical --- landing --- information integration --- memristor --- synaptic device --- spike-timing-dependent plasticity --- neuromorphic computation --- memristive device --- ZnO films --- conditioned reflex --- quantum dot --- sample grating --- cross-gain modulation --- bistability --- distributed Bragg --- semiconductor optical amplifier --- topological insulator --- field-effect transistor --- nanostructure synthesis --- optoelectronic devices --- topological magnetoelectric effect --- drain-induced barrier lowering (DIBL) --- gate-induced drain leakage (GIDL) --- silicon on insulator (SOI) --- graphene --- supercapacitor --- energy storage --- ionic liquid --- UV irradiation --- luminescent centres --- bismuth ions --- two-photon process --- oscillatory neural networks --- pattern recognition --- higher order synchronization --- thermal coupling --- vanadium dioxide --- band-to-band tunneling --- L-shaped tunnel field-effect-transistor --- double-gate tunnel field-effect-transistor --- corner-effect --- AlGaN/GaN --- high-electron mobility transistor (HEMTs) --- p-GaN --- enhancement-mode --- 2DEG density --- InAlN/GaN heterostructure --- polarization effect --- quantum mechanical --- gallium nitride --- MISHEMT --- dielectric layer --- interface traps --- current collapse --- PECVD --- gate-induced drain leakage (GIDL) --- drain-induced barrier lowering (DIBL) --- recessed channel array transistor (RCAT) --- on-current (Ion) --- off-current (Ioff) --- subthreshold slope (SS) --- threshold voltage (VTH) --- saddle FinFET (S-FinFET) --- potential drop width (PDW) --- shallow trench isolation (STI) --- source/drain (S/D) --- conductivity --- 2D material --- Green’s function --- reflection transmision method --- variational form --- dual-switching transistor --- third harmonic tuning --- low voltage --- high efficiency --- CMOS power amplifier IC --- insulator–metal transition (IMT) --- charge injection --- Mott transition --- conductive atomic force microscopy (cAFM) --- gate field effect --- atomic layer deposition (ALD) --- zinc oxide --- silicon --- ZnO/Si --- electron affinity --- bandgap tuning --- conduction band offset --- heterojunction --- solar cells --- PC1D --- vertical field-effect transistor (VFET) --- back current blocking layer (BCBL) --- gallium nitride (GaN) --- normally off power devices --- n/a

Multi-Sensor Information Fusion

Authors: ---
ISBN: 9783039283026 9783039283033 Year: Pages: 602 DOI: 10.3390/books978-3-03928-303-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.

Keywords

linear regression --- covariance matrix --- data association --- sensor fusing --- SLAM --- multi-sensor data fusion --- conflicting evidence --- Dempster–Shafer evidence theory --- belief entropy --- similarity measure --- data classification --- fault diagnosis --- Bar-Shalom Campo --- Covariance Projection method --- data fusion --- distributed architecture --- Kalman filter --- linear constraints --- inconsistent data --- user experience evaluation --- user experience measurement --- eye-tracking --- facial expression --- galvanic skin response --- EEG --- interaction tracker --- self-reporting --- user experience platform --- mix-method approach --- image fusion --- multi-focus --- weight maps --- gradient domain --- fast guided filter. --- Dempster-Shafer evidence theory (DST) --- uncertainty measure --- open world --- closed world --- Deng entropy --- extended belief entropy --- sensor data fusion --- orthogonal redundant inertial measurement units --- data fusion architectures --- sensors bias --- fire source localization --- dynamic optimization --- global information --- the Range-Point-Range frame --- the Range-Range-Range frame --- sensor array --- SINS/DVL integrated navigation --- unscented information filter --- square root --- state probability approximation --- most suitable parameter form --- deep learning --- data preprocessing --- Human Activity Recognition (HAR) --- Internet of things (IoT) --- Industry 4.0 --- trajectory reconstruction --- low-cost sensors --- embedded systems --- powered two wheels (PTW) --- safe trajectory --- data fusion --- health management decision --- grey group decision-making --- health reliability degree --- maintenance decision --- sensor system --- least-squares filtering --- least-squares smoothing --- networked systems --- random parameter matrices --- random delays --- packet dropouts --- multi-sensor system --- multi-sensor information fusion --- particle swarm optimization --- sensor data fusion algorithm --- distributed intelligence system --- multi-sensor time series --- deep learning --- machine health monitoring --- time-distributed ConvLSTM model --- spatiotemporal feature learning --- optimal estimate --- unknown inputs --- distributed fusion --- augmented state Kalman filtering (ASKF) --- soft sensor --- coefficient of determination maximization strategy --- expectation maximization (EM) algorithm --- Gaussian mixture model (GMM) --- alumina concentration --- multi-sensor joint calibration --- high-dimensional fusion data (HFD) --- supervoxel --- Gaussian density peak clustering --- sematic segmentation --- multisensor data fusion --- multitarget tracking --- GMPHD --- sonar network --- RFS --- attitude estimation --- Kalman filter --- land vehicle --- magnetic angular rate and gravity (MARG) sensor --- quaternion --- yaw estimation --- network flow theory --- multitarget tracking --- spectral clustering --- A* search algorithm --- RTS smoother --- integer programming --- Surface measurement --- multi-sensor measurement --- surface modelling --- data fusion --- Gaussian process --- multi-sensor network --- observable degree analysis --- information fusion --- nonlinear system --- hybrid adaptive filtering --- weighted fusion estimation --- square-root cubature Kalman filter --- information filter --- surface quality control --- multi-sensor data fusion --- cutting forces --- vibration --- acoustic emission --- signal feature extraction methods --- predictive modeling techniques --- attitude --- orientation --- estimation --- Kalman filter --- quaternion --- manifold --- image registration --- evidential reasoning --- belief functions --- uncertainty --- DoS attack --- industrial cyber-physical system (ICPS) --- security zones --- mimicry security switch strategy --- fixed-point filter --- extended Kalman filter --- nested iterative method --- Steffensen’s iterative method --- convergence condition --- vehicular localization --- target positioning --- high-definition map --- vehicle-to-everything --- intelligent and connected vehicles --- intelligent transport system --- image registration --- non-rigid feature matching --- local structure descriptor --- Gaussian mixture model --- aircraft pilot --- workload --- multi-source data fusion --- fuzzy neural network --- principal component analysis --- parameter learning --- drift compensation --- domain adaption --- feature representations --- electronic nose --- data fusion --- dual gating --- MEMS accelerometer and gyroscope --- cardiac PET --- out-of-sequence --- multi-target tracking --- random finite set --- gaussian mixture probability hypothesis density --- multisensor system --- Gaussian process regression --- Bayesian reasoning method --- Dempster–Shafer evidence theory (DST) --- uncertainty measure --- novel belief entropy --- multi-sensor data fusion --- decision-level sensor fusion --- electronic nose --- subspace alignment --- interference suppression --- transfer --- evidence combination --- time-domain data fusion --- object classification --- uncertainty --- multirotor UAV --- precision landing --- artificial marker --- pose estimation --- sensor fusion --- camera --- LiDAR --- calibration --- plane matching --- ICP --- projection --- data fusion --- data registration --- adaptive distance function --- complex surface measurement --- Gaussian process model --- Dempster–Shafer evidence theory --- conflict measurement --- mutual support degree --- Hellinger distance --- Pignistic vector angle --- multi-sensor data fusion --- multi-environments --- state estimation --- unmanned aerial vehicle

Listing 1 - 5 of 5
Sort by
Narrow your search