Search results:
Found 17
Listing 1 - 10 of 17 | << page >> |
Sort by
|
Choose an application
Solid oxide fuel cells offer great prospects for the sustainable, clean and safe conversion of various fuels into electrical energy. In this thesis, the performance-determining loss processes for the cell operation on reformate fuels are elucidated via electrochemical impedance spectroscopy. Model-based analyses reveal the electrochemical fuel oxidation mechanism, the coupling of fuel gas transport and reforming chemistry and the impact of fuel impurities on the degradation of each loss process.
SOFC --- Electrochemistry --- Reforming Chemistry --- Impedance Spectroscopy --- Modeling
Choose an application
This book covers new advances in the field of impedance spectroscopy including fundamentals, methods and applications. It releases selected extended and peer reviewed scientific contributions from the International Workshop on Impedance Spectroscopy (IWIS 2017) focussing on detailed information about recent scientific research results in electrochemistry and battery research, bioimpedance measurement, sensors, system design, signal processing.
Choose an application
This thesis introduces (i) amendments to basic electrochemical measurement techniques in the time and frequency domain suitable for electrochemical energy conversion systems like fuel cells and batteries, which enable shorter measurement times and improved precision in both measurement and parameter identification, and (ii) a modeling approach that is able to simulate a technically relevant system just by information gained through static and impedance measurements of laboratory size cells.
Choose an application
In this work, a flexible biosensor platform based on impedance spectroscopy and comprising of gold electrodes, polymeric flow cells and a suitable surface modification were developed. Initially, several surface modification techniques described in literature were implemented and optimized for impedimetric biosensors but their individual limitations rendered them unsuitable for this biosensor platform. A novel method based on photobleaching was developed and tested showing satisfactory results.
Choose an application
ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms.[Selective and quantitative detection of different kinds of biocomponents plays an important role in biomedical applications, clinical diagnostics, environmental monitoring, toxicology, regenerative medicine and drug delivery. Therefore, multidisciplinary area of magnetic biosensing have been extensively developed in recent years, aiming to create compact analytical devices for non-expensive and low time consuming analysis provided at the point of care by non-skilled personnel. Biological samples exhibit very low magnetic background, and thus highly sensitive measurements of magnetic labels or magnetic nanoparticles enriched units can be performed without further processing. A magnetic biosensor is a compact analytical device in which magnetic transducer converts a magnetic field variation into a change of frequency, current, voltage, etc. Different types of magnetic effects are capable of creating magnetic biosensors with extra high sensitivity. This book describes interesting examples of magnetic materials based biosensors, including the synthesis of model materials for biosensor development, new engineering solutions and theoretical contributions on the magnetic biosensor sensitivity. Book contains 13 research works representing international multidisciplinary teams from Austria, China, Germany, Greece, Iran, Russia, Serbia, Spain, Taiwan and United States of America. It can be useful for PHD students and researches working in the field of magnetic nanomaterials and biomedical applications.
Choose an application
To estimate the reachable specific energy and power of aqueous Li-air batteries, a physical based model was developed, which for the first time includes the microstructure of Li-air cells. Parameters like solid/liquid interface resistances were quantified with help of a newly developed setup. Simulations based on the developed model revealed that even conservative estimations promise an increase in the specific energy by at least a factor of two compared to present Li-ion batteries.
Choose an application
In this book, a new procedure to analyze lithium-ion cells is introduced. The cells are disassembled to analyze their components in experimental cell housings. Then, Electrochemical Impedance Spectroscopy, time domain measurements and the Distribution function of Relaxation Times are applied to obtain a deep understanding of the relevant loss processes. This procedure yields a notable surplus of information about the electrode contributions to the overall internal resistance of the cell.
Choose an application
Solid oxide fuel cells (SOFC) achieve high efficiencies, the lower the internal electrochemical losses are. This work investigates insulating secondary phases at the cathode/electrolyte interface that are formed during fabrication. Full cells and model systems are electrochemically characterized, analyzed by electron microscopy and reconstructed by tomography. A FEM model reveals performance limiting factors. As a result, an optimized production routine is proposed.
Choose an application
Nanostructured materials exploit physical phenomena and mechanisms that cannot be derived by simply scaling down the associated bulk structures and phenomena; furthermore, new quantum effects come into play in nanosystems. The exploitation of these emerging nanoscale interactions prompts the innovative design of nanomaterials. Understanding the behavior of materials on all length scales—from the nanostructure up to the macroscopic response—is a critical challenge for materials science. Modern analytical technologies based on synchrotron radiation (SR) allow for the non-destructive investigation of the chemical, electronic, and magnetic structure of materials in any environment. SR facilities have developed revolutionary new ideas and experimental setups for characterizing nanomaterials, involving spectroscopy, diffraction, scatterings, microscopy, tomography, and all kinds of highly sophisticated combinations of such investigation techniques. This book is a collection of contributions addressing several aspects of synchrotron radiation as applied to the investigation of chemical, electronic, and magnetic structure of nanostructured materials. The results reported here provide not only an interesting and multidisciplinary overview of the chemicophysical investigations of nanostructured materials carried out by state-of-the-art SR-induced techniques, but also an exciting glance into the future perspectives of nanomaterial characterization methods.
synchrotron radiation induced spectroscopies --- XPS --- NEXAFS --- nanostructures --- titanium alloy --- self-assembling peptides --- bioactive materials --- room temperature ionic liquids --- in situ X-ray photoelectron spectroscopy --- binding energies --- cyclic voltammetry --- electrochemical impedance spectroscopy --- micro-mesoporous carbon electrode --- supercapacitor materials --- thin films --- multilayers --- thermal conductivity --- thermal expansion --- laser heating --- synchrotron pump-probe powder scattering --- nuclear forward scattering --- metallic glasses --- magnetic annealing --- synchrotron radiation --- crystallization kinetics --- Ge(001)-2
Choose an application
In this book we have collected a series of state-of-the art papers written by specialists in the field of ionic liquid crystals (ILCs) to address key questions concerning the synthesis, properties, and applications of ILCs. New compounds exhibiting ionic liquid crystalline phases are presented, both of calamitic as well as discotic type. Their dynamic and structural properties have been investigated with a series of experimental techniques including differential scanning calorimetry, polarized optical spectroscopy, X-ray scattering, and nuclear magnetic resonance, impedance spectroscopy to mention but a few. Moreover, computer simulations using both fully atomistic and highly coarse-grained force fields have been presented, offering an invaluable microscopic view of the structure and dynamics of these fascinating materials.
ionic liquids --- liquid crystals --- ionic liquid crystals --- molecular dynamics --- ionic liquids --- liquid crystals --- ionic liquid crystals --- molecular orientational order --- nuclear magnetic resonance --- ionic liquid --- phase behavior --- crystal polymorphs --- ionic liquid crystal --- liquid crystals --- ionic liquid crystals --- ionic liquids --- imidazolium --- thiazolium --- mesophases --- liquid crystals --- columnar --- discotic --- crown ether --- electron transport --- ion transport --- ion channels --- impedance spectroscopy --- photoconductivity --- X-ray diffraction --- salt effect --- viologens --- 4-n-alkylbenzenesulfonic acids --- metathesis reaction --- ionic liquid crystals --- thermotropic --- smectic phase A --- differential scanning calorimetry --- polarizing optical microscopy --- thermogravimetric analysis --- liquid crystal --- alignment layer --- residual DC --- Ag nano-particles doping --- n/a
Listing 1 - 10 of 17 | << page >> |
Sort by
|