Search results: Found 6

Listing 1 - 6 of 6
Sort by
Mechanisms of Persistence, Survival, and Transmission of Bacterial Foodborne Pathogens in Production Animals

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455454 Year: Pages: 130 DOI: 10.3389/978-2-88945-545-4 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Animal Sciences
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

Foodborne illness resulting from food production animals is a global health concern, and the Centers for Disease Control estimate that one in six Americans will become sick with a foodborne illness each year. Of course there are numerous causes for these outbreaks, but contamination from a food production animal is certainly one source. Understanding the host-pathogen interaction and how foodborne bacterial pathogens establish a persistent infection and evade host immune responses will be pivotal in reducing the instance of foodborne illness traced back to a food production animal source.In this volume, we bring together original research and review articles covering some of the key issues surrounding the mechanisms of persistence, survival, and transmission of bacterial foodborne pathogens in production animals. The research focused on poultry and specifically addressed antibiotic resistance, Salmonella colonization, pathogen reduction strategies using pre- or probiotics, pathogen evasion, and post-harvest intervention and pathogen testing. The following 11 articles are fine examples of the multidisciplinary approaches that will be required to address and understand the complex interplay between food safety and animal production.

About the Foodborne Pathogen Campylobacter

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453887 Year: Pages: 221 DOI: 10.3389/978-2-88945-388-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology --- Internal medicine
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

A significant increase in the prevalence of campylobacteriosis cases has been observed over the past years. Campylobacter has emerged as the leading cause of bacterial foodborne disease worldwide with a significant impact on human health and an associated economic burdens. Campylobacteriosis human cases have been generally correlated with the handling, preparation and consumption of poultry. In 2017, the European Commission regulation has amended Regulation (EC) No 2073/2005 on the hygiene of foodstuffs as regards Campylobacter on broiler carcasses stating a limit of 1000 cfu/g. Campylobacter is also present in other farm animals and is frequently found on a range of foodstuffs due to cross contamination. Among the pathogenic species, C. jejuni is the most prevalent species followed by C. coli. Current guidelines highlight the importance of biosecurity but these measures are failing to mitigate the risk of pathogenic Campylobacter. As an obligate microaerophile, Campylobacter does not multiply under atmospheric oxygen concentration at ambient temperatures. It therefore constitutes a puzzle as to how it can survive from farm to retail outlets. The underlying molecular mechanisms of persistence, survival and pathogenesis appear to be unique to this pathogen. Recent research has indicated how genomic polymorphism, restricted catabolic capacity, self regulation or deregulation of genes, bacterial cooperation and unknown contamination routes may be connected to this specificity.This book includes original studies on both C. jejuni and C. coli species dealing with epidemiology and animal carriage, host interaction, control strategies, metabolism and regulation specificities of these two pathogenic species, methodology to improve cultural techniques and chicken gut microbiota challenged with Campylobacter.

Game Changer - Next Generation Sequencing and its Impact on Food Microbiology

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454631 Year: Pages: 302 DOI: 10.3389/978-2-88945-463-1 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Advances in next-generation sequencing technologies (NGS) are revolutionizing the field of food microbiology. Microbial whole genome sequencing (WGS) can provide identification, characterization, and subtyping of pathogens for epidemiological investigations at a level of precision previously not possible. This allows for connections and source attribution to be inferred between related isolates that may be overlooked by traditional techniques. The archiving and global sharing of genome sequences allow for retrospective analysis of virulence genes, antimicrobial resistance markers, mobile genetic elements and other novel genes. The advent of high-throughput 16S rRNA amplicon sequencing, in combination with the advantages offered by massively parallel second-generation sequencing for metagenomics, enable intensive studies on the microbiomes of food products and the impact of foods on the human microbiome. These studies may one day lead to the development of reliable culture-independent methods for food monitoring and surveillance. Similarly, RNA-seq has provided insights into the transcriptomes and hence the behaviour of bacterial pathogens in food, food processing environments, and in interaction with the host at a resolution previously not achieved through the use of microarrays and/or RT-PCR. The vast un-tapped potential applications of NGS along with its rapidly declining costs, give this technology the ability to contribute significantly to consumer protection, global trade facilitation, and increased food safety and security. Despite the rapid advances, challenges remain. How will NGS data be incorporated into our existing global food safety infrastructure? How will massive NGS data be stored and shared globally? What bioinformatics solutions will be used to analyse and optimise these large data sets? This Research Topic discusses recent advances in the field of food microbiology made possible through the use of NGS.

Advances in Prevention of Foodborne Pathogens of Public Health Concern during Manufacturing

Authors: ---
ISBN: 9783039219322 9783039219339 Year: Pages: 168 DOI: 10.3390/books978-3-03921-933-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

According to a report from the U.S. Centers for Disease Control and Prevention (CDC), achieving safe and healthier foods was one of the top ten achievements of public health in the 20th century. However, considerable persisting challenges currently exist in developed nations and developing economies for further assuring the safety and security of the food supplies. According to CDC estimates, as many as 3000 American adults, as an example, and based on a recent epidemiological estimate of the World Health Organization, around 420,000 individuals around the globe, lose their lives annually due to foodborne diseases. This emphasizes the need for innovative and emerging interventions, for further prevention or mitigation of the risk of foodborne microbial pathogens during food processing and manufacturing. The current publication discusses recent advancements and progress in the elimination and decontamination of microbial pathogens during various stages of manufacturing and production. Special emphasis is placed on hurdle validation studies, investigating decontamination of non-typhoidal Salmonella enterica serovars, various serogroups of Shiga toxin-producing Escherichia coli, public health-significant serotypes of Listeria monocytogenes, and pathogenic species of Cronobacter.

Polymeric Systems as Antimicrobial or Antifouling Agents

Authors: ---
ISBN: 9783039284566 / 9783039284573 Year: Pages: 400 DOI: 10.3390/books978-3-03928-457-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Social Sciences --- Sociology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The rapid increase in the emergence of antibiotic-resistant bacterial strains, combined with a dwindling rate of discovery of novel antibiotic molecules, has created an alarming issue worldwide. Although the occurrence of resistance in microbes is a natural process, the overuse of antibiotics is known to increase the rate of resistance evolution. Under antibiotic treatment, susceptible bacteria inevitably die, while resistant microorganisms proliferate under reduced competition. Therefore, the out-of-control use of antibiotics eliminates drug-susceptible species that would naturally limit the expansion of resistant species. In addition, the ability of many microbial species to grow as a biofilm has further complicated the treatment of infections with conventional antibiotics. A number of corrective measures are currently being explored to reverse or slow antibiotic resistance evolution, Among which one of the most promising solutions is the development of polymer-based antimicrobial compounds. In this Special Issue, different polymer systems able to prevent or treat biofilm formation, including cationic polymers, antibacterial peptide-mimetic polymers, polymers or composites able to load and release bioactive molecules, and antifouling polymers able to repel microbes by physical or chemical mechanisms are reported. Their applications in the design and fabrication of medical devices, in food packaging, and as drug carriers is investigated.

Keywords

cationic polymers --- imidization --- quaternization --- antimicrobial properties --- hemolytic activity --- coatings from nanoparticles --- biocompatible polymer --- antimicrobial polymer --- dynamic light scattering --- coatings wettability --- microbicidal coatings --- bacteria viability --- bactericidal coatings --- Escherichia coli --- Staphylococcus aureus --- Acinetobacter baumannii --- multidrug-resistant --- antimicrobial peptide --- antibiofilm activity --- physiological salt --- biofilm --- anti-biofilm surface --- surface functionalization --- ?-chymotrypsin --- proteinase --- antimicrobial polymers --- quaternary ammonium --- 2-hydroxyethyl methacrylate --- thermal stability --- polymers --- antibacterial --- drug delivery --- periodontitis --- periodontal biofilms --- polyamide 11 --- antibacterial --- polymeric biocide --- thermal stability --- biofilm --- antifouling --- copper paint --- additives --- biofilm --- lipopeptides --- biofilm --- persister cells --- ocular infections --- biofilm on contact lenses --- cuprous oxide nanoparticles --- linear low-density polyethylene --- composites --- adhesives --- antibacterial activity --- water disinfection --- active packaging --- antimicrobial peptides --- food shelf-life --- foodborne pathogens --- plastic materials --- antibacterial peptides --- halictine --- circular dichroism --- fluorescence --- infrared spectroscopy --- segmented polyurethanes --- polyethylene glycol --- microbial biofilm --- antifouling materials --- medical device-related infections --- wound dressings --- additive manufacturing --- antibacterial polymers --- biocompatible systems --- drug delivery systems --- 3D printing --- amorphous materials --- ordered mesoporous silica --- sol-gel preparation --- drug carrier --- multifunctional hybrid systems --- olive mill wastewater --- antibacterial properties --- layered double hydroxides --- bionanocomposites --- acrylates --- antibacterial activity --- copolymerization --- polymeric films --- polymerizable quaternary ammonium salts --- quaternary ammonium salts --- UV-induced polymerization --- antimicrobial resistance --- antimicrobial polymers --- ESKAPE pathogens --- anti-biofilm surfaces --- polymeric surfaces --- biofilm methods --- biofilm analysis --- biofilm devices --- n/a

Hurdles for Phage Therapy (PT) to Become a Reality

Author:
ISBN: 9783039213917 9783039213924 Year: Pages: 484 DOI: 10.3390/books978-3-03921-392-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Alternative treatment modes for antibiotic-resistant bacterial pathogens have become a public health priority. Bacteriophages are bacterial viruses that infect and lyse bacterial cells. Since bacteriophages are frequently bacterial host species-specific and can often also infect antibiotic-resistant bacterial cells, they could represent ideal antimicrobials for fighting the antibiotic resistance crisis. The medical use of bacteriophages has become known as phage therapy. It is widely used in Russia, where phage cocktails are sold in pharmacies as an over-the-counter drug. However, no phage product has been registered for medical purposes outside of the former Soviet Union. The current Special Issue of Viruses contains a collection of papers from opinion leaders in the field who explore hurdles to the introduction of phage therapy in western countries. The articles cover diverse topics ranging from patent to regulatory issues, the targeting of suitable bacterial infections, and the selection and characterization of safe and efficient phage cocktails. Phage resistance is discussed, and gaps in our knowledge of phage–bacterium interactions in the mammalian body are revealed, while other articles explore the use of phages in food production and processing.

Keywords

Staphylococcus aureus --- bacteriophage --- phage therapy --- vB_SauM-fRuSau02 --- Twortlikevirus --- antibiotic --- antimicrobial resistance --- magistral preparation --- compounding pharmacy --- phage therapy --- regulatory framework --- personalized medicine --- bacteriophage --- phage --- horizontal gene transfer --- co-evolution --- phage therapy --- industrial phage application --- antimicrobial resistance (AMR) --- Germany --- pH stability --- phage-host interactions --- genomics --- antibiotic-resistance --- phage preparation --- lysins --- biofilms --- typhoid fever --- Salmonella Typhi --- extended-spectrum beta lactamases (ESBL) --- Democratic Republic of the Congo --- bacteriophages --- MALDI-MS --- Staphylococcus --- bacteriophages --- phage therapy --- Kayvirus --- Viral proteins --- bacteriophage --- therapy --- phage therapy --- bacterial disease --- infection --- target selection --- Bacteriophage --- phage therapy --- resistance --- adaptation --- prophage --- production --- regulation --- phage therapy --- viral genomes --- best practices --- IND --- high-throughput sequencing --- bacteriophages --- phages --- food safety --- foodborne illness --- phage therapy --- history of science --- science communication --- bacteriophage --- phage therapy --- sustainable agriculture --- zoonosis --- antibiotic resistance --- phage therapy --- experimental therapy --- phage cocktails --- anti-phage antibodies --- prophage --- immunomodulation --- phage therapy --- evolution --- bacterial resistance --- virulence --- Listeria ivanovii --- bacteriophages --- alginate --- production --- disinfection --- phagodisinfection --- virus–host interactions --- bacteriophage efficacy --- gastrointestinal tract --- phage therapy --- bacteriophage --- phage therapy --- antimicrobial resistance --- antibiotic --- global health --- developing countries --- infectious disease --- bacteriophage --- phage --- phage therapy --- phage-resistance --- phage therapy --- bacterial infection --- capsule depolymerase --- antibiotic --- animal model --- bacterial resistance --- bacteriophage --- immunology --- innate immunity --- adaptive immunity --- human host --- phage-human host interaction --- bacterial infection --- antibiotic resistance --- bacteriophage --- antibiotic therapy --- phage therapy --- cases report --- abortive infection --- prophage --- adsorption --- Enterococcus --- rhamnopolysaccharide --- bacteriophage --- phage therapy --- Staphylococcus aureus --- biofilm --- antimicrobial --- frequency of resistance --- phage sensitivity --- resistance management --- nontraditional antibacterial --- bacteriophages --- phage therapy --- antibiotic resistance --- Pseudomonas aeruginosa --- Escherichia coli --- Staphylococcus aureus --- Brussels --- Belgium --- phage biocontrol --- patent landscape --- crop production --- bacteriophage --- phage therapy --- multidrug-resistant bacteria --- antimicrobial resistance --- bacteriophage therapy --- compassionate use --- antibiotic resistance --- phage therapy --- PTMP --- ATMP --- regulatory framework --- pharmaceutical paradigm shift --- clinical trial --- magistral formula --- personalized medicine --- phage therapy --- E. faecalis --- OrthoMCL --- antimicrobial resistance --- capsule --- Galleria mellonella --- Klebsiella pneumoniae --- phage therapy --- n/a --- antimicrobial resistance --- bacteriophage --- personalised medicines --- phage therapy --- pharmaceutical legislation --- regulatory framework

Listing 1 - 6 of 6
Sort by
Narrow your search