Search results: Found 7

Listing 1 - 7 of 7
Sort by
Progress in Commutative Algebra 2. Closures, Finiteness and Factorization

Authors: --- --- ---
Book Series: De Gruyter Proceedings in Mathematics ISBN: 9783110278606 Year: Pages: 325 DOI: 10.1515/9783110278606 Language: English
Publisher: De Gruyter Grant: Knowledge Unlatched - 102373
Subject: Mathematics
Added to DOAB on : 2019-04-25 11:21:03
License:

Loading...
Export citation

Choose an application

Abstract

This is the second of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains surveys on aspects of closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a nice guide to closure operations by Epstein, but also contains an article on test ideals by Schwede and Tucker and one by Enescu which discusses the action of the Frobenius on finite dimensional vector spaces both of which are related to tight closure. Finiteness properties of rings and modules or the lack of them come up in all aspects of commutative algebra. However, in the study of non-noetherian rings it is much easier to find a ring having a finite number of prime ideals. The editors have included papers by Boynton and Sather-Wagstaff and by Watkins that discuss the relationship of rings with finite Krull dimension and their finite extensions. Finiteness properties in commutative group rings are discussed in Glaz and Schwarz's paper. And Olberding's selection presents us with constructions that produce rings whose integral closure in their field of fractions is not finitely

Detection and characterization of inclusions in impedance tomography

Author:
ISBN: 9783866446359 Year: Pages: VIII, 135 p. DOI: 10.5445/KSP/1000021838 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Computer Science
Added to DOAB on : 2019-07-30 20:01:57
License:

Loading...
Export citation

Choose an application

Abstract

The topic of this work are two further developments of the Factorization method for electrical impedance tomography.We present a modification of this method that is capable of detecting mixed inclusions, i.e. both inclusions with a higher as well as inclusions with a lower conductivity than the background medium. In addition, we derive a new method to compute the conductivity inside inclusions after they have been localized.

Factorization methods for photonics and rough surfaces

Author:
ISBN: 9783866442566 Year: Pages: VI, 156 p. DOI: 10.5445/KSP/1000008735 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Mathematics
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

This thesis investigates non-destructive testing problems for rough and periodic surfaces, where the task is to determine such structures from scattered waves. Such problems are non-linear and ill-posed. We are interested in the analysis of the Factorization method applied to this class of inverse scattering problems. This method does not attempt to solve a non-linear operator equation for the unknown object but computes a binary criterion characterizing points inside and outside the structure.

The factorization method for inverse scattering from periodic inhomogeneous media

Author:
ISBN: 9783866445505 Year: Pages: X, 152 p. DOI: 10.5445/KSP/1000019400 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Mathematics
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

This book addresses the identification of the shape of penetrable periodic media by means of scattered time-harmonic waves. Mathematically, this is about the determination of the support of a function which occurs in the governing equations. Our theoretical analysis shows that this problem can be strictly solved for acoustic as well as for electromagnetic radiation by the so-called Factorization Method. We apply this method to reconstruct a couple of media from numerically simulated field data.

Hyperspectral Image Unmixing Incorporating Adjacency Information

Author:
Book Series: Forschungsberichte aus der Industriellen Informationstechnik / Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie ISSN: 21906629 ISBN: 9783731507888 Year: Volume: 18 Pages: XIII, 203 p. DOI: 10.5445/KSP/1000081665 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-28 18:37:01
License:

Loading...
Export citation

Choose an application

Abstract

While the spectral information contained in hyperspectral images is rich, the spatial resolution of such images is in many cases very low. Many pixel spectra are mixtures of pure materials’ spectra and therefore need to be decomposed into their constituents. This work investigates new decomposition methods taking into account spectral, spatial and global 3D adjacency information. This allows for faster and more accurate decomposition results.

Entropy in Dynamic Systems

Authors: ---
ISBN: 9783039216161 9783039216178 Year: Pages: 172 DOI: 10.3390/books978-3-03921-617-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

In order to measure and quantify the complex behavior of real-world systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and non-uniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineering-oriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed.

Advanced Numerical Methods in Applied Sciences

Authors: ---
ISBN: 9783038976660 9783038976677 Year: Pages: 306 DOI: 10.3390/books978-3-03897-667-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The use of scientific computing tools is currently customary for solving problems at several complexity levels in Applied Sciences. The great need for reliable software in the scientific community conveys a continuous stimulus to develop new and better performing numerical methods that are able to grasp the particular features of the problem at hand. This has been the case for many different settings of numerical analysis, and this Special Issue aims at covering some important developments in various areas of application.

Keywords

time fractional differential equations --- mixed-index problems --- analytical solution --- asymptotic stability --- conservative problems --- Hamiltonian problems --- energy-conserving methods --- Poisson problems --- Hamiltonian Boundary Value Methods --- HBVMs --- line integral methods --- constrained Hamiltonian problems --- Hamiltonian PDEs --- highly oscillatory problems --- boundary element method --- finite difference method --- floating strike Asian options --- continuous geometric average --- barrier options --- isogeometric analysis --- adaptive methods --- hierarchical splines --- THB-splines --- local refinement --- linear systems --- preconditioners --- Cholesky factorization --- limited memory --- Volterra integral equations --- Volterra integro–differential equations --- collocation methods --- multistep methods --- convergence --- B-spline --- optimal basis --- fractional derivative --- Galerkin method --- collocation method --- spectral (eigenvalue) and singular value distributions --- generalized locally Toeplitz sequences --- discretization of systems of differential equations --- higher-order finite element methods --- discontinuous Galerkin methods --- finite difference methods --- isogeometric analysis --- B-splines --- curl–curl operator --- time harmonic Maxwell’s equations and magnetostatic problems --- low rank completion --- matrix ODEs --- gradient system --- ordinary differential equations --- Runge–Kutta --- tree --- stump --- order --- elementary differential --- edge-histogram --- edge-preserving smoothing --- histogram specification --- initial value problems --- one-step methods --- Hermite–Obreshkov methods --- symplecticity --- B-splines --- BS methods --- hyperbolic partial differential equations --- high order discontinuous Galerkin finite element schemes --- shock waves and discontinuities --- vectorization and parallelization --- high performance computing --- generalized Schur algorithm --- null-space --- displacement rank --- structured matrices --- stochastic differential equations --- stochastic multistep methods --- stochastic Volterra integral equations --- mean-square stability --- asymptotic stability --- numerical analysis --- numerical methods --- scientific computing --- initial value problems --- one-step methods --- Hermite–Obreshkov methods --- symplecticity --- B-splines --- BS methods

Listing 1 - 7 of 7
Sort by
Narrow your search