Search results:
Found 4
Listing 1  4 of 4 
Sort by

Choose an application
Since the late 1800s, the discovery of new viruses was a gradual process. Viruses were described one by one using a suite of techniques such as (electron) microscopy and viral culture. Investigators were usually interested in a disease state within an organism, and expeditions in viral ecology were rare. The advent of metagenomics using highthroughput sequencing has revolutionized not only the rate of virus discovery, but also the nature of the discoveries. For example, the viral ecology and etiology of many human diseases are being characterized, nonpathogenic viral commensals are ubiquitous, and the description of environmental viromes is making progress. This Frontiers in Virology Research Topic showcases how metagenomic and bioinformatic approaches have been combined to discover, classify and characterize novel viruses.
metagenomics  virus discovery  virome  bacteriophages  phages  metagenome  bioinformatics  biological dark matter
Choose an application
This book summarizes the science to be carried out by the upcoming Cherenkov Telescope Array, a major groundbased gammaray observatory that will be constructed over the next six to eight years. The major scientific themes, as well as core program of key science projects, have been developed by the CTA Consortium, a collaboration of scientists from many institutions worldwide.CTA will be the major facility in highenergy and very highenergy photon astronomy over the next decade and beyond. CTA will have capabilities well beyond past and present observatories. Thus, CTA's science program is expected to be rich and broad and will complement other major multiwavelength and multimessenger facilities. This book is intended to be the primary resource for the science case for CTA and it thus will be of great interest to the broader physics and astronomy communities. The electronic version (ebook) is available in open access.
Cherenkov Telescope Array (CTA)  Cherenkov Telescopes  Gamma Rays  Astrophysics  Astronomy  Astroparticle Physics  Dark Matter  Multiwavelength  Multimessenger
Choose an application
Various cosmological observations support not only cosmological inflation in the early universe, which is also known as exponential cosmic expansion, but also that the expansion of the latetime universe is accelerating. To explain this phenomenon, the existence of dark energy is proposed. In addition, according to the rotation curve of galaxies, the existence of dark matter, which does not shine, is also suggested. If primordial gravitational waves are detected in the future, the mechanism for realizing inflation can be revealed. Moreover, there exist two main candidates for dark matter. The first is a new particle, the existence of which is predicted in particle physics. The second is an astrophysical object which is not found by electromagnetic waves. Furthermore, there are two representative approaches to account for the accelerated expansion of the current universe. One is to assume the unknown dark energy in general relativity. The other is to extend the gravity theory to large scales. Investigation of the origins of inflation, dark matter, and dark energy is one of the most fundamental problems in modern physics and cosmology. The purpose of this book is to explore the physics and cosmology of inflation, dark matter, and dark energy.
bransdicke theory  dark energy model  cosmological parameters  Dark Energy  statistical analysis  Baryon Acoustic Oscillation (BAO)  Supernovae  cosmological model  Hubble constant  Cosmic Microwave Background (CMB) temperature  n/a  Dark Energy  Dark Matter  memory  dark matter  galactic rotation curve  cosmoligical parameters  dark energy models  loop quantum cosmology  dark energy  spacetime symmetry  de Sitter vacuum  quantum optical systems  astronomical and spaceresearch instrumentation  instruments, apparatus, and components common to several branches of physics and astronomy  normal galaxies, extragalactic objects and systems  field theory  comparative planetology  properties of specific particles  quantum optics  fundamental astronomy  EinsteinAether theory of gravity  dosmological parameters  dark energy models  cosmology  particle physics  cosmo–particle physics  QCD  hypercolor  dark atoms  composite dark matter  scalar–tensor gravity  junction conditions  null hypersurfaces  higher dimension gauged supergravity black hole  quantum gravity  quantum tunneling phenomenon  Hawking radiation  dynamical Chern–Simons modified gravity  parametrizations  cosmological parameters
Choose an application
The four volumes of the proceedings of MG14 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 35 morning plenary talks over 6 days, 6 evening popular talks and 100 parallel sessions on 84 topics over 4 afternoons.Volume A contains plenary and review talks ranging from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics.The remaining volumes include parallel sessions which touch on dark matter, neutrinos, Xray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, EinsteinMaxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, selfgravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity.
General Relativity  Gravitation  Astrophysics  Quantum Gravity  Cosmology  Theoretical Physics  String Theory  Gravitational Wave  Gamma Ray Burst  Black Hole  Active Galactic Nuclei  Neutron Star  Pulsar  White Dwarf  Dark Matter  Neutrinos  Xray Sources  Binary Systems  Radiative Transfer  Accretion Disks  Supernova  Black Hole Thermodynamics  Numerical Relativity  Gravitational Lensing  Large Scale Structure  Observational Cosmology  Early Universe Models  Cosmic Microwave Background Anisotropies  Inhomogeneous Cosmology  Inflation  EinsteinMaxwell Systems  Wormholes  Exact Solutions of Einstein's Equations  Gravitational Wave Detectors and Data Analysis  Precision Gravitational Measurements  Loop Quantum Gravity  Quantum Cosmology  Cosmic Rays
Listing 1  4 of 4 
Sort by
