Search results: Found 2

Listing 1 - 2 of 2
Sort by
Marine Glycobiology, Glycomics and Lectins

Author:
ISBN: 9783039218202 9783039218219 Year: Pages: 176 DOI: 10.3390/books978-3-03921-821-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-12-09 16:39:37
License:

Loading...
Export citation

Choose an application

Abstract

Glycans (carbohydrate chains) of marine creatures are rich and diverse in polysaccharides, glycoproteins, and glycolipids. The chains that are metabolized by glycan-related enzymes (glycosyltransferases and glycosidases) are recognized by glycan-binding proteins (lectins) which regulate cellular processes such as growth, differentiation, and death. Marine glycomics that involves the genome and transcriptome accelerates our understanding of the evolution of glycans, glycan-related enzymes, and lectins. From 2017 to 2019, the Special Issue “Marine Glycobiology, Glycomics and Lectins” of the journal Marine Drugs published scientific articles and reviews, on the background of “glycobiology”—that is, glycan-based biosciences. The aim was to promote the discovery of novel biomolecules that contribute to drug development and clinical studies. This has great potential for establishing connections between the fields of both human health and marine life sciences.This book contains 11 scientific papers representing current topics in comprehensive glycosciences related to therapeutic agents from marine natural products, as outlined.

Role of DNA Methyltransferases in the Epigenome

Authors: ---
ISBN: 9783039280209 9783039280216 Year: Pages: 150 DOI: 10.3390/books978-3-03928-021-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

DNA methylation, a modification found in most species, regulates chromatin functions in conjunction with other epigenome modifications, such as histone post-translational modifications and non-coding RNAs. In mammals, DNA methylation has an essential role in development by orchestrating the generation and maintenance of the phenotypic diversity of human cell types. Recent years have brought spectacular advances in our understanding of the mechanism, function and regulation of DNA methyltransferases through their interaction with other epigenome modifications, chromatin factors and post-translational modifications, which are described in this Special Issue of Genes. Manuscripts are specifically addressing describing the targeting and regulation of DNA methyltransferases by interacting factors and their roles in cellular differentiation and the development of diseases. Prof. Dr. Albert Jeltsch and Prof. Dr. Humaira Gowher, Guest Editors

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

english (2)


Year
From To Submit

2020 (1)

2019 (1)