Search results: Found 3

Listing 1 - 3 of 3
Sort by
Optimization of Heat and Mass Exchange

Authors: --- ---
ISBN: 9783039287420 / 9783039287437 Year: Pages: 182 DOI: 10.3390/books978-3-03928-743-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue of Processes operates on the basis of a rigorous peer-review with a single-blind assessment and at least two independent reviewers, thereby ensuring a high quality final product. I would like to thank our reviewers, for providing the authors with constructive comments, and Editorial Board, for their professional advice that led to the final decision. I am sure that, in coming years, readers of this Special Issue will find the scientific manuscripts interesting and beneficial to their research.

Experimental and Numerical Studies in Biomedical Engineering

Authors: ---
ISBN: 9783039212477 9783039212484 Year: Pages: 130 DOI: 10.3390/books978-3-03921-248-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

The term ‘biomedical engineering’ refers to the application of the principles and problem-solving techniques of engineering to biology and medicine. Biomedical engineering is an interdisciplinary branch, as many of the problems health professionals are confronted with have traditionally been of interest to engineers because they involve processes that are fundamental to engineering practice. Biomedical engineers employ common engineering methods to comprehend, modify, or control biological systems, and to design and manufacture devices that can assist in the diagnosis and therapy of human diseases. This Special Issue of Fluids aims to be a forum for scientists and engineers from academia and industry to present and discuss recent developments in the field of biomedical engineering. It contains papers that tackle, both numerically (Computational Fluid Dynamics studies) and experimentally, biomedical engineering problems, with a diverse range of studies focusing on the fundamental understanding of fluid flows in biological systems, modelling studies on complex rheological phenomena and molecular dynamics, design and improvement of lab-on-a-chip devices, modelling of processes inside the human body as well as drug delivery applications. Contributions have focused on problems associated with subjects that include hemodynamical flows, arterial wall shear stress, targeted drug delivery, FSI/CFD and Multiphysics simulations, molecular dynamics modelling and physiology-based biokinetic models.

Symmetry and Fluid Mechanics

Author:
ISBN: 9783039284269 9783039284276 Year: Pages: 446 DOI: 10.3390/books978-3-03928-427-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Since the 1980s, attention has increased in the research of fluid mechanics due to its wide application in industry and phycology. Major advances have occurred in the modeling of key topics such Newtonian and non-Newtonian fluids, nanoparticles, thermal management, and physiological fluid phenomena in biological systems, which have been published in this Special Issue on symmetry and fluid mechanics for Symmetry. Although, this book is not a formal textbook, it will be useful for university teachers, research students, and industrial researchers and for overcoming the difficulties that occur when considering the nonlinear governing equations. For such types of equations, obtaining an analytic or even a numerical solution is often more difficult. This book addresses this challenging job by outlining the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.

Keywords

stagnation point flow --- numerical solution --- magnetic field --- nanofuid --- unsteady rotating flow --- porous medium --- aqueous suspensions of CNT’s --- nonlinear thermal radiation --- viscous dissipation effect --- HAM --- chemical reaction --- activation energy --- peristalsis --- couple stress fluid --- nanoparticle --- Keller-box method --- Newtonian heating --- nonlinear thermal radiation --- nonlinear stretching cylinder --- homogeneous/heterogeneous reactions --- nanofluid --- steady laminar flow --- nanofluid --- heat source/sink --- magnetic field --- stretching sheet --- SWCNT/MWCNT nanofluid --- thin needle --- classical and fractional order problems --- APCM technique --- SWCNTs --- MWCNTs --- stretched surface --- rotating system --- nanofluid --- MHD --- thermal radiation --- HAM --- nonlinear hydroelastic waves --- uniform current --- thin elastic plate --- solitary waves --- PLK method --- Permeable walls --- suction/injection --- nanofluids --- porous medium --- mixed convection --- magnetohydrodynamic (MHD) --- dual solution --- stability analysis --- Darcy Forchheimer model --- nanofluid --- exponential sheet --- Jeffrey fluid --- laminar g-Jitter flow --- inclined stretching sheet --- heat source/sink --- Magnetohydrodynamic (MHD) --- Jefferey, Maxwell and Oldroyd-B fluids --- Cattaneo–Christov heat flux --- homogeneous–heterogeneous reactions --- analytical technique --- Numerical technique --- viscous fluid --- Caputo–Fabrizio time-fractional derivative --- Laplace and Fourier transformations --- side walls --- oscillating shear stress --- forced convection --- microducts --- Knudsen number --- Nusselt number --- artificial neural networks --- particle swarm optimization --- Casson fluid --- chemical reaction --- cylinder --- heat generation --- magnetohydrodynamic (MHD) --- slip --- Carreau fluid --- Cattaneo–Christov heat flux model --- convective heat boundary condition --- temperature dependent thermal conductivity --- homogeneous-heterogeneous reactions --- integer and non-integer order derivatives --- GO-W/GO-EG nanofluids --- Marangoni convection --- FDE-12 numerical method --- couple stress fluid --- Hafnium particles --- Couette–Poiseuille flow --- shooting method --- magnetic field --- Darcy–Brinkman porous medium --- viscous dissipation --- slip conditions --- porous dissipation --- permeable sheet --- stretchable rotating disk --- CNTs (MWCNTs and SWCNTs) --- velocity slip --- convective boundary condition --- OHAM --- Casson fluid model --- rotating rigid disk --- nanoparticles --- Magnetohydrodynamics (MHD) --- Oil/MWCNT nanofluid --- heat transfer --- finite volume method --- laminar flow --- slip coefficient --- microchannel --- arched surface --- nonlinear thermal radiation --- molecular diameter --- Al2O3 nanoparticles --- streamlines --- isotherms --- RK scheme --- peristaltic transport --- tapered channel --- porous medium --- smart pumping for hemodialysis --- thermal radiation --- compressible viscous flow --- symmetric linear equations --- generalized finite difference scheme --- kernel gradient free --- Lagrangian approach --- Newtonian and non-Newtonian fluids --- nanofluids and particle shape effects --- convective heat and mass transfer --- steady and unsteady flow problems --- multiphase flow simulations --- fractional order differential equations --- thermodynamics --- physiological fluid phenomena in biological systems

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

english (2)

eng (1)


Year
From To Submit

2020 (2)

2019 (1)