Search results: Found 2

Listing 1 - 2 of 2
Sort by
Breaking the cycle: Attacking the malaria parasite in the liver

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196951 Year: Pages: 173 DOI: 10.3389/978-2-88919-695-1 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General) --- Microbiology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Despite significant progress in the global fight against malaria, this parasitic infection is still responsible for nearly 300 million clinical cases and more than half a million deaths each year, predominantly in African children less than 5 years of age. The infection starts when mosquitoes transmit small numbers of parasites into the skin. From here, the parasites travel with the bloodstream to the liver where they undergo an initial round of replication and maturation to the next developmental stage that infects red blood cells. A vaccine capable of blocking the clinically silent liver phase of the Plasmodium life cycle would prevent the subsequent symptomatic phase of this tropical disease, including its frequently fatal manifestations such as severe anemia, acute lung injury, and cerebral malaria. Parasitologists, immunologists, and vaccinologists have come to appreciate the complexity of the adaptive immune response against the liver stages of this deadly parasite. Lymphocytes play a central role in the elimination of Plasmodium infected hepatocytes, both in humans and animal models, but our understanding of the exact cellular interactions and molecular effector mechanisms that lead to parasite killing within the complex hepatic microenvironment of an immune host is still rudimentary. Nevertheless, recent collaborative efforts have led to promising vaccine approaches based on liver stages that have conferred sterile immunity in humans – the University of Oxford's Ad prime / MVA boost vaccine, the Naval Medical Research Center’s DNA prime / Ad boost vaccine, Sanaria Inc.'s radiation-attenuated whole sporozoite vaccine, and Radboud University Medical Centre’s and Sanaria's derived chemoprophylaxis with sporozoites vaccines. The aim of this Research Topic is to bring together researchers with expertise in malariology, immunology, hepatology, antigen discovery and vaccine development to provide a better understanding of the basic biology of Plasmodium in the liver and the host’s innate and adaptive immune responses. Understanding the conditions required to generate complete protection in a vaccinated individual will bring us closer to our ultimate goal, namely to develop a safe, scalable, and affordable malaria vaccine capable of inducing sustained high-level protective immunity in the large proportion of the world’s population constantly at risk of malaria.

Influenza Virus and Vaccination

Authors: ---
ISBN: 9783039288175 / 9783039288182 Year: Pages: 130 DOI: 10.3390/books978-3-03928-818-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The influenza virus poses a threat to human health and is responsible for global epidemics every year. In addition to seasonal infections, influenza can cause occasional pandemics of great consequence when novel viruses are introduced into humans. Despite the implementation of comprehensive vaccination programs, influenza viruses continue to pose an important and unpredictable global public health threat. They are one of the most significant causes of morbidity and mortality each year and have a significant economic impact. In recent years, research has been conducted to find alternative approaches to influenza vaccine development, including the generation of universal vaccines. Notably, significant progress in the field of influenza infection, transmission, and immunity have contributed to our understanding of influenza biology, and to expanding the technological approaches for the generation of more efficient strategies against influenza infections. Moreover, highly remarkable developments have been made in the implementation of new methodologies to evaluate the efficiency of vaccines and improve them for use on domestic animals such as poultry, horses, dogs or pigs. This enables us to decrease the exposure of humans to potentially pandemic viruses. The articles in this Special Issue will address the importance of influenza to human health and the advances in influenza research that have led to the development of better therapeutics and vaccination strategies.

Listing 1 - 2 of 2
Sort by
Narrow your search