Search results:
Found 4
Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The possibility to integrate biorecognition elements into electrochemical detection systems has opened the way to a new class of powerful analytical devices named electrochemical (EC) biosensors. The first EC biosensors employed enzymes as recognition elements; however this limited their application to redox enzymes and natural or artificial redox substrates or inhibitors. Broadening this to include non-electroactive analytes was later possible thanks to the development of affinity sensors in which specific interactions between biomolecules are exploited for developing highly selective and sensitive biosensors. Presently, the combination of the exceptional molecular recognition capabilities of antibodies and aptamers with the sensitivity, low cost, practicality of use and handiness of electrochemical devices is leading to an impressive development of EC immunosensors and aptasensors that are potentially suitable to detect a wide range of analytes, following a path that is moving alongside the most recent advances in proteomics. Interestingly, with continued improvements and refinements in EC immunosensors based on the use of labels, together with intrinsically electroactive, or those with the ability to interact with electroactive molecules, a new generation of label-free sensors is being developed. This Special Issue takes stock of the state of the art and identifies prospects for EC immuno- and aptasensors, both labeled and label-free. Emphasis is placed on analytical applications for the rapid detection of disease markers and for toxicological and food analyses.
Electrochemical sensors --- Biosensors --- Immuno-test --- Aptamers --- Protein detection --- Voltammetry --- Amperometry --- Electrochemical impedance --- Functional electrodes
Choose an application
Nucleic acids (RNA and DNA) and their chemical analogs have been utilized as building materials due to their biocompatibility and programmability. RNA, which naturally possesses a wide range of different functions, is now being widely investigated for its role as a responsive biomaterial which dynamically reacts to changes in the surrounding environment. It is now evident that artificially designed self-assembling RNAs, that can form programmable nanoparticles and supra-assemblies, will play an increasingly important part in a diverse range of applications, such as macromolecular therapies, drug delivery systems, biosensing, tissue engineering, programmable scaffolds for material organization, logic gates, and soft actuators, to name but a few. The current exciting Special Issue comprises research highlights, short communications, research articles, and reviews that all bring together the leading scientists who are exploring a wide range of the fundamental properties of RNA and DNA nanoassemblies suitable for biomedical applications.
logic gates --- nucleic acid computing --- RNA aptamers --- RNA nanotechnology --- glioblastoma multiforme --- gene therapy --- viral vector --- non-viral vector --- gene delivery --- siRNA --- RNA aptamers --- biosensors --- live-cell imaging --- fluorogenic RNA --- riboswitch --- ribozyme --- RNA nanotechnology --- RNA self-assembly --- light-up aptamer --- RNA nanoparticle --- DNA nanotechnology --- nanopores --- biological media --- serum --- stability --- aggregation --- RNA nanotechnology --- aptamers --- cotranscriptional folding --- suicide gene therapy --- non-viral gene delivery --- ganciclovir --- spinal cord tumor --- nucleic acid nanoparticles --- NANPs --- immunostimulation --- dynamic --- conditionally activated --- RNA interference --- RNA nanotechnology --- silver nanoclusters --- fluorescence --- i-motif DNA --- cytosine rich sequences --- RNA --- RNA logic --- conditional activation --- functional RNA --- nucleic acid therapeutic --- small-angle X-ray scattering --- small-angle neutron scattering --- contrast variation --- nucleic acid nanoparticle --- structural characterization --- n/a
Choose an application
G-quadruplexes (G4s) are nucleic acids secondary structures that form in DNA or RNA guanine (G)-rich strands. In recent years, the presence of G4s in microorganisms has attracted increasing interest. In prokaryotes, G4 sequences have been reported in several human pathogens. Bacterial enzymes able to process G4s have been identified. In viruses, G4s have been suggested to be involved in key steps of the viral life cycle: They have been associated with the human immunodeficiency virus (HIV), herpes simplex virus 1 (HSV-1), human papilloma virus, swine pseudorabies virus, and other viruses’ genomes. New evidence shows the presence of G4s in parasitic protozoa, such as the causative agent of malaria. G4 binding proteins and mRNA G4s have been implicated in the regulation of microorganisms’ genome replication and translation. G4 ligands have been developed and tested both as tools to study the complexity of G4-mediated mechanisms in the viral life cycle and as therapeutic agents. Moreover, new techniques to study G4 folding and their interactions with proteins have been developed. This Special Issue will focus on G4s present in microorganisms, addressing all the above aspects.
structure-activity relationship --- protein-mRNA interactions --- G-quadruplexes --- PhenDC3 --- pyridostatin --- EBNA1 --- Epstein-Barr virus (EBV) --- alphaherpesviruses --- pseudorabies virus --- genome --- G-quadruplex --- G-quadruplex ligand --- nucleic acids conformation --- regulatory element --- G-quadruplex --- NMR --- folding --- DNA --- structure --- human papillomaviruses --- G-quadruplex --- G4 --- protozoa --- conformational dynamics --- co-transcriptional folding --- co-translational refolding --- metastable structure --- G-quadruplex --- translation suppression --- G-quadruplex --- bacteria --- bioinformatics --- deinococcus --- G4Hunter --- protein–DNA interaction --- S. cerevisiae --- G-quadruplex formation --- genome stability --- RecQ helicase --- G-quadruplex --- virus --- eukaryotic hosts --- Herpesviridae --- genome evolution --- G-quadruplex --- G4 --- nucleoside diphosphate kinase --- NDPK --- G-quadruplex --- immediate early promoters --- Alphaherpesvirinae --- Herpesvirus --- virus --- nucleic acids --- G-quadruplex --- aptamers --- turn-on ligands --- fluorescence --- microbes
Choose an application
This Topical Collection of Molecules provides the most recent advancements and trends within the framework of food analysis, confirming the growing public, academic, and industrial interest in this field. The articles broach topics related to sample preparation, separation science, spectroscopic techniques, sensors and biosensors, as well as investigations dealing with the characterization of macronutrients, micronutrients, and other biomolecules. It offers the latest updates regarding alternative food sources (e.g., algae), functional foods, effects of processing, chiral or achiral bioactive compounds, contaminants, and every topic related to food science that is appealing to readers. Nowadays, the increasing awareness of the close relation among diet, health, and social development is stimulating demands for high levels of quality and safety in agro-food production, as well as new studies to fill gaps in the actual body of knowledge about food composition. For these reasons, modern research in food science and human nutrition is moving from classical methodologies to advanced instrumental platforms for comprehensive characterization. Nondestructive spectroscopic and imaging technologies are also proposed for food process monitoring and quality control in real time.
cuprous oxide nanoparticles --- reduced graphene oxide --- modified electrode --- sunset yellow --- second-derivative linear sweep voltammetry --- clenbuterol --- systematic evolution of ligands by exponential enrichment --- real-time quantitative PCR --- high-throughput sequencing technology --- aptamers --- gold nanoparticles biosensor --- carbamates --- multiple reaction monitoring (MRM) --- enhanced product ion (EPI) --- mass fragmentation --- confirmatory method --- pesticide residues --- Croatian wines --- biogenic amines --- HPLC --- geographical origin --- polyelectrolyte composite film --- nitrite detection --- differential pulse voltammetry --- cyclic voltammetry --- mycotoxin --- dimerization --- HRMS --- NMR --- fruit jams --- food security --- phenolic acids --- quercetin --- agro-biodiversity --- HPLC fingerprint --- Polygonatum cyrtonema --- saccharides --- oligosaccharides --- fructose --- HPLC–QTOF–MS/MS --- steaming --- essential oil --- extraction techniques --- hops extracts --- hydrodistillation --- Marynka strain --- microwave-assisted hydrodistillation --- anthocyanins --- bioactive compounds --- Box–Behnken design --- microwave-assisted extraction --- myrtle --- Myrtus communis --- phenolic compounds --- Chia seed oil --- polyunsaturated fatty acid --- antioxidant --- lipid-lowering effect --- collagen peptide --- HPLC fingerprint --- antioxidant --- anti-inflammatory --- spectrum-effect relationship --- amino acids --- carbohydrates --- acidity --- polarity --- molecular weight --- Tricholoma matsutake --- Pol gene --- qualitative and quantitative PCR --- DNA extraction --- ?-blockers --- metabolites --- milk powder --- Q-Orbitrap --- rosé wines --- white wines --- bottle aging --- flavor profile --- closures --- anthocyanins --- bioactive compounds --- Box–Behnken design --- ultrasound-assisted extraction --- myrtle --- Myrtus communis L. --- phenolic compounds --- food safety --- kiwifruit (Actinidia chinensis) --- molecular identification --- phylogeny --- DNA barcode --- hard clams --- Meretrix lyrata --- lipid classes --- fatty acids --- phospholipids --- molecular species of phospholipid --- high resolution mass spectrometry --- impedimetric aptasensor --- screen-printed interface --- bifunctional polymer arms --- PAT detection --- apple juice --- chiral --- chiral stationary phases --- enantiomers --- food --- review --- Piper methysticum (kava) --- kavalactones --- flavokavains --- UHPLC-UV --- mass spectra --- isomerization --- single-laboratory validation --- quality control --- Lactarius deliciosus --- chemical composition --- antioxidant --- antihyperglycemic --- ?13C-IRMS --- fatty acids composition --- 1H-NMR --- walnut varieties --- poultry eggs --- thiamphenicol --- florfenicol --- florfenicol amine --- ASE --- UPLC-FLD --- Sojae semen praeparatum (SSP) --- fermentation --- conversion --- ultra-fast liquid chromatography (UFLC)–TripleTOF MS --- principal component analysis (PCA) --- microalgae --- Scenedesmus --- supercritical fluid extraction --- carotenoids --- fat-soluble vitamins --- antioxidants --- fruit juice --- blends --- adulteration --- 1H NMR --- PLS --- chemometrics --- natural mature honey --- immature honey --- chemometric analysis --- multi-physicochemical parameters --- food quality --- IMS --- food composition --- food process control --- food authentication --- food adulteration --- food safety --- antibiotics --- liquid chromatography mass spectrometry --- milk --- muscle --- validation
Listing 1 - 4 of 4 |
Sort by
|