Search results: Found 3

Listing 1 - 3 of 3
Sort by
Antimicrobial Resistance in Environmental Waters

Authors: ---
ISBN: 9783038976080 9783038976097 Year: Pages: 188 DOI: 10.3390/books978-3-03897-609-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-05-09 17:16:14
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue on Antimicrobial Resistance in Environmental Waters features 11 articles on the monitoring and surveillance of antimicrobial resistance (AMR) in natural aquatic systems (i.e., reservoirs, rivers), and effluent discharge from water treatment plants to assess the effectiveness of AMR removal and resulting loads in treated waters. Some of the key elements of AMR studies presented in this Special Issue highlight the underlying drivers of AMR contamination in the environment and the evaluation of the hazard imposed on aquatic organisms in receiving environments through ecological risk assessments. As described in this Issue, screening antimicrobial peptide (AMP) libraries for biofilm disruption and antimicrobial candidates are promising avenues for the development of new treatment options to eradicate resistance.

Arthropod Venom Components and Their Potential Usage

Authors: ---
ISBN: 9783039285402 9783039285419 Year: Pages: 404 DOI: 10.3390/books978-3-03928-541-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Public Health --- Medicine (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Thousands of arthropod species, ranging from arachnids (spiders and scorpions) to hymenopterans (ants, bees, and wasps) and myriapods (centipedes), are venomous and use their venoms for both defense and predation. These venoms are invariably harmful to humans, and some may cause serious injuries, e.g., those from scorpions, spiders, and wasps. Arthropods’ venoms are also known as rich sources of biologically active compounds and have attracted the attention of toxin researchers for years. In this century, venom component analysis has progressed considerable due to the advances in analytical techniques, in particular, mass spectrometry and next-generation deep (DNA and RNA) sequencing. As such, proteomic and peptidomic analyses using LC–MS have enabled the full analysis of venom components, revealing a variety of novel peptide and protein toxins sequences and scaffolds, potentially useful as pharmacological research tools and for the development of highly selective peptide ligands and therapeutic leads, like chlorotoxin. Due to their specificity for numerous ion-channel subtypes, including voltage- and ligand-gated ion channels, arthropod neurotoxins have been investigated to dissect and treat neurodegenerative diseases and control epileptic syndromes. This Special Issue collects information on such progress, encouraging contributions on the chemical and biological characterization of venom components, not only peptides and proteins, but also small molecules, their mechanisms of action, and the development of venom-derived peptide leads.

Keywords

ant --- venom --- mass spectrometry analysis --- pilosulin-like peptide --- phospholipases D --- metalloproteases --- Loxosceles spp. --- recombinant toxins --- hybrid immunogen --- neutralizing antibodies --- antivenoms --- LyeTxI-b --- Staphylococcus aureus --- keratitis --- AMP --- mastoparan --- Acinetobacter baumannii --- stent --- cantharidin --- blister beetle --- Berberomeloe majalis --- nematicide --- ixodicide --- antifeedant --- scorpion venom --- insecticidal peptide --- mass spectrometric analysis --- de novo sequencing --- Centruroides limpidus Karch --- proteome --- scorpion --- transcriptome --- venom toxicity --- brown spider --- venom --- Loxosceles --- toxins --- biotools --- drug targets --- novel therapeutics --- spider toxin --- directed disulfide bond formation --- Nav channel activity --- Nav1.7 --- pain target --- automated patch-clamp --- bee venom --- alternative treatment --- skin --- cutaneous disease --- mechanism --- chemotherapy --- cold allodynia --- mechanical allodynia --- melittin --- neuropathic pain --- oxaliplatin --- natural antibiotics --- piperidine heterocyclic amines --- industrial biotechnology --- LTQ Orbitrap Hybrid Mass Spectrometer --- myrmecology --- venom --- pain --- ants --- wasps --- bees --- Hymenoptera --- envenomation --- toxins --- peptides --- pharmacology --- Dinoponera quadriceps --- Formicidae --- Hymenoptera venom --- proteomics --- venom allergens --- ICK-like toxins --- melittin --- insect immune system --- apoptosis --- heart contractility --- Tenebrio molitor --- bee venom --- bioinformatics --- computational docking --- homology modelling --- ion channel structure --- protein–peptide interactions --- tertiapin --- venom peptides --- virtual screening --- small hive beetle --- solitary wasp --- venom --- antimicrobial peptide --- linear cationic ?-helical peptide --- amphipathic ?-helix structure --- channel-like pore-forming activity --- antimicrobial peptide --- venom --- arthropod --- malaria --- Chagas disease --- human African trypanosomiasis --- leishmaniasis --- toxoplasmosis --- venom peptides --- FMRF-amide --- insect neurotoxin --- protons --- pH regulation --- acid-sensing ion channels --- acid-gated currents --- chronic pain --- ICK peptide --- knottins --- NaV --- spider venom --- voltage-gated sodium channel --- n/a

Polymeric Systems as Antimicrobial or Antifouling Agents

Authors: ---
ISBN: 9783039284566 / 9783039284573 Year: Pages: 400 DOI: 10.3390/books978-3-03928-457-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Social Sciences --- Sociology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The rapid increase in the emergence of antibiotic-resistant bacterial strains, combined with a dwindling rate of discovery of novel antibiotic molecules, has created an alarming issue worldwide. Although the occurrence of resistance in microbes is a natural process, the overuse of antibiotics is known to increase the rate of resistance evolution. Under antibiotic treatment, susceptible bacteria inevitably die, while resistant microorganisms proliferate under reduced competition. Therefore, the out-of-control use of antibiotics eliminates drug-susceptible species that would naturally limit the expansion of resistant species. In addition, the ability of many microbial species to grow as a biofilm has further complicated the treatment of infections with conventional antibiotics. A number of corrective measures are currently being explored to reverse or slow antibiotic resistance evolution, Among which one of the most promising solutions is the development of polymer-based antimicrobial compounds. In this Special Issue, different polymer systems able to prevent or treat biofilm formation, including cationic polymers, antibacterial peptide-mimetic polymers, polymers or composites able to load and release bioactive molecules, and antifouling polymers able to repel microbes by physical or chemical mechanisms are reported. Their applications in the design and fabrication of medical devices, in food packaging, and as drug carriers is investigated.

Keywords

cationic polymers --- imidization --- quaternization --- antimicrobial properties --- hemolytic activity --- coatings from nanoparticles --- biocompatible polymer --- antimicrobial polymer --- dynamic light scattering --- coatings wettability --- microbicidal coatings --- bacteria viability --- bactericidal coatings --- Escherichia coli --- Staphylococcus aureus --- Acinetobacter baumannii --- multidrug-resistant --- antimicrobial peptide --- antibiofilm activity --- physiological salt --- biofilm --- anti-biofilm surface --- surface functionalization --- ?-chymotrypsin --- proteinase --- antimicrobial polymers --- quaternary ammonium --- 2-hydroxyethyl methacrylate --- thermal stability --- polymers --- antibacterial --- drug delivery --- periodontitis --- periodontal biofilms --- polyamide 11 --- antibacterial --- polymeric biocide --- thermal stability --- biofilm --- antifouling --- copper paint --- additives --- biofilm --- lipopeptides --- biofilm --- persister cells --- ocular infections --- biofilm on contact lenses --- cuprous oxide nanoparticles --- linear low-density polyethylene --- composites --- adhesives --- antibacterial activity --- water disinfection --- active packaging --- antimicrobial peptides --- food shelf-life --- foodborne pathogens --- plastic materials --- antibacterial peptides --- halictine --- circular dichroism --- fluorescence --- infrared spectroscopy --- segmented polyurethanes --- polyethylene glycol --- microbial biofilm --- antifouling materials --- medical device-related infections --- wound dressings --- additive manufacturing --- antibacterial polymers --- biocompatible systems --- drug delivery systems --- 3D printing --- amorphous materials --- ordered mesoporous silica --- sol-gel preparation --- drug carrier --- multifunctional hybrid systems --- olive mill wastewater --- antibacterial properties --- layered double hydroxides --- bionanocomposites --- acrylates --- antibacterial activity --- copolymerization --- polymeric films --- polymerizable quaternary ammonium salts --- quaternary ammonium salts --- UV-induced polymerization --- antimicrobial resistance --- antimicrobial polymers --- ESKAPE pathogens --- anti-biofilm surfaces --- polymeric surfaces --- biofilm methods --- biofilm analysis --- biofilm devices --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

english (2)

eng (1)


Year
From To Submit

2020 (2)

2019 (1)