Search results: Found 7

Listing 1 - 7 of 7
Sort by
Alloy Steels

Author:
ISBN: 9783038428831 9783038428848 Year: Pages: X, 320 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mining and Metallurgy --- General and Civil Engineering
Added to DOAB on : 2018-05-04 14:03:05
License:

Loading...
Export citation

Choose an application

Abstract

Alloy steels play a pivotal role in modern society. Their continued development improves the human condition for everyone on earth. Their broad use has resulted in a wide variety of continuing challenges to address economic, manufacturing, and industrial issues. This book contains twenty-three papers covering a wide cross-section of alloy steels and technical problems. Readers interested in solving current manufacturing and application problems will find this issue helpful. The papers contained within cover a wide range of topics by a broad set of authors from across the globe. There are papers covering structure–property relations on various alloys. Other papers discuss the proper processing of alloy steels through the welding, electroslag remelting, and rolling processes. A significant number of the papers cover optimizing the heat treatment of traditional alloys as well as new alloys. There are papers that concentrate on providing real-world performance data on alloy steels, an important but under-studied topic. Of particular interest is a review on the welding of austenitic and duplex stainless steels that gives neophytes and experienced researchers an excellent introduction to the state-of-the-art. This collection of work should be valuable to anyone interested in alloy steels.

Keywords

Steels --- Alloy --- Welding --- Rolling --- Corrosion --- Stainless Steel --- Casting

Advances in Welding Metal Alloys, Dissimilar Metals and Additively Manufactured Parts

Author:
ISBN: 9783038973720 9783038973737 Year: Pages: 222 DOI: 10.3390/books978-3-03897-373-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Materials --- Mining and Metallurgy
Added to DOAB on : 2018-11-29 09:42:07
License:

Loading...
Export citation

Choose an application

Abstract

Welding technology has been taken for granted as a mature and established technology for too long. However, many new welding technologies have been included among the alternatives to joining materials. They come both from the areas of fusion and solid-state welding. Moreover, a recent approach has offered one more alternative. This is hybrid welding, which couples two or more welding sources in a cooperative or synergic welding mode. Welding engineers and scientists have the task to understand which is the best technology for a specific application. This task requires deep knowledge and great intelligence to tackle the challenge of producing light and smart structures and products.In this book, a glimpse of recent developments in metal alloy welding is presented. Laser, friction, and arc welding are the main protagonists of the papers that are included. Processes, materials, and tools are described and studied along with investigation procedures and numerical simulations.This book will make you aware of most of the subjects discussed in the scientific community and new potentialities of welding as a leading technology in manufacturing.I hope you enjoy reading this Special Issue, "Advances in Welding Metal Alloys, Dissimilar Metals and Additively Manufactured Parts".

Solid State Lasers Materials, Technologies and Applications

Author:
ISBN: 9783038428411 9783038428428 Year: Pages: VI, 170 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Optics and Lights
Added to DOAB on : 2018-04-24 12:46:59
License:

Loading...
Export citation

Choose an application

Abstract

Solid-state lasers offer unique qualities in terms of flexibility, robustness, efficiency, and wavelength diversity. For these reasons, they are nowadays irreplaceable tools in many scientific and industrial applications. The engineering of new materials, the advances in photonics technologies, and the increasing demand for speed, cleanliness, and high-precision in industrial processes contribute to propel the research in this exciting and quickly developing field. Despite the impossibility to cover all the aspects of this very diversified topic in a single publication, this Special Issue "Solid State Lasers Materials, Technologies and Applications" offers an interesting insight into some of the latest developments in this field. Comprehensive review papers describe the state of the art of highly doped fiber lasers and amplifiers, deep-ultraviolet generation, and laser welding under vacuum with high-power lasers. Research articles present the latest results on picosecond pulse amplification, mid-infrared laser sources, parametric down-conversion modules, and coherent beam combining. Heavy-industry applications, such as laser welding and laser cladding, are also addressed.

Glassy Materials Based Microdevices

Authors: ---
ISBN: 9783038976189 Year: Pages: 284 DOI: 10.3390/books978-3-03897-619-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Electrical and Nuclear Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.

Keywords

micro-crack propagation --- severing force --- quartz glass --- micro-grinding --- microfluidics --- single-cell analysis --- polymeric microfluidic flow cytometry --- single-cell protein quantification --- glass molding process --- groove --- roughness --- filling ratio --- label-free sensor --- optofluidic microbubble resonator --- detection of small molecules --- chalcogenide glass --- infrared optics --- precision glass molding --- aspherical lens --- freeform optics --- micro/nano patterning --- 2D colloidal crystal --- soft colloidal lithography --- strain microsensor --- vectorial strain gauge --- compound glass --- microsphere --- resonator --- lasing --- sensing --- microresonator --- whispering gallery mode --- long period grating --- fiber coupling --- distributed sensing --- chemical/biological sensing --- direct metal forming --- glassy carbon micromold --- enhanced boiling heat transfer --- metallic microstructure --- microspheres --- microdevices --- glass --- polymers --- solar energy --- nuclear fusion --- thermal insulation --- sol-gel --- Ag nanoaggregates --- Yb3+ ions --- down-shifting --- photonic microdevices --- alkali cells --- MEMS vapor cells --- optical cells --- atomic spectroscopy --- microtechnology --- microfabrication --- MEMS --- microfluidic devices --- laser materials processing --- ultrafast laser micromachining --- ultrafast laser welding --- enclosed microstructures --- glass --- porous media --- fluid displacement --- spray pyrolysis technique --- dielectric materials --- luminescent materials --- photovoltaics --- frequency conversion --- device simulations --- europium --- luminescence --- hybrid materials --- microdevices --- light --- photon --- communications --- waveguides --- fibers --- biosensors --- microstructured optical fibers --- whispering gallery modes --- light localization --- optofluidics --- lab-on-a-chip --- femtosecond laser --- laser micromachining --- diffusion

Microstructure and Mechanical Properties of Structural Metals and Alloys

Author:
ISBN: 9783038975052 / 9783038975069 Year: Pages: 272 DOI: 10.3390/books978-3-03897-506-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The papers collected in this special issue clearly reflect the modern research trends in materials science. These fields of specific attention are high-Mn TWIP steels, high-Cr heat resistant steels, aluminum alloys, ultrafine grained materials including those developed by severe plastic deformation, and high-entropy alloys. The major portion of the collected papers is focused on the mechanisms of microstructure evolution and the mechanical properties of metallic materials subjected to various thermo-mechanical, deformation or heat treatments. Another large portion of the studies is aimed on the elaboration of alloying design of advanced steels and alloys. The changes in phase content, transformation and particle precipitation and their effect on the properties are also broadly presented in this collection, including the microstructure/property changes caused by irradiation.

Keywords

Mg–Sm–Zn–Zr --- dynamic precipitation --- microstructure --- mechanical property --- bimodal ferrite steel --- ultrafine-grained microstructure --- mechanical properties --- corrosion resistance --- abnormal grain growth --- grain boundary engineering --- electron backscattered diffraction --- growth rate --- Al metal matrix composites --- microstructure --- mechanical properties --- strengthening mechanism --- hot compression --- dynamic recovery --- dynamic recrystallization --- texture --- aluminum alloys --- Al-Fe-Si-Zr system --- microstructure --- hardness --- electrical conductivity --- metal–matrix composite --- high-pressure torsion --- microstructure evolution --- microhardness --- shape memory alloy --- columnar grain --- Cu-Al-Mn --- elastocaloric effect --- strain rate --- measuring temperature --- creep --- lead-free solder --- Sb solder --- Sn-8.0Sb-3.0Ag --- solder microstructure --- martensitic steels --- creep --- precipitation --- electron microscopy --- high-Mn TWIP steel --- cold rolling --- annealing --- recovery --- recrystallization --- strengthening --- austenitic 304 stainless steels --- sub-merged arc welding --- post-weld heat treatment --- aluminum alloys --- aging --- precipitation --- electrical resistivity --- mechanical properties --- ferritic steel --- irradiation --- nanoindentation --- hardness --- transmission electron microscopy (TEM) --- microstructure --- high-entropy alloys --- high-pressure torsion --- microstructure evolution --- twinning --- mechanical properties --- welded rotor --- weld metal --- impact toughness --- PWHT --- microstructure evolution --- Cu-Cr-Zr --- precipitation --- orientation relationship --- recrystallization --- annealing twins --- structural steel plate --- nonmetallic inclusions --- rare earth control --- M23C6 --- ion irradiation --- M6C --- amorphization --- RAFM steels --- hot stamping --- press hardening --- martensitic expansion --- force peak --- cycle time --- high-Mn steel --- deformation twinning --- dynamic recrystallization --- grain refinement --- work hardening --- in situ tensile testing --- super duplex stainless steel --- SDSS --- low-temperature --- ?-phase --- SEM --- EBSD --- microstructure analysis --- n/a

Structure and Mechanical Properties of Transition Group Metals, Alloys, and Intermetallic Compounds

Author:
ISBN: 9783039211463 / 9783039211470 Year: Pages: 222 DOI: 10.3390/books978-3-03921-147-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The aim of this Special Issue is to present the latest theoretical and experimental achievements concerning the mechanisms of microstructural change in metallic materials subject to different processing methods, and their effect on mechanical properties. It is my pleasure to present a series of compelling scientific papers written by scientists from the community of transition group metals, alloys, and intermetallic compounds.

Keywords

metal matrix composites --- laser metal deposition --- Inconel 625 --- additive manufacturing --- laser processing --- metal matrix composites --- Z-pin reinforcement --- delamination --- carbon fiber --- strengthening mechanisms --- severe plastic deformation (SPD) --- cross-channel extrusion (CCE) --- back pressure (BP) --- numerical simulation (FEM) --- physical modeling technique (PMT) --- metal–matrix composites (MMCs) --- carbon fiber --- mechanical properties --- z-pin reinforcement --- laminate --- titanium alloys --- high pressure torsion --- microhardness --- Cu–Ag alloy --- high-pressure torsion --- ultrafine microstructure --- phase dissolution --- microhardness --- friction stir welding --- heat treatment --- AA2519 --- microstructure --- fatigue --- fractography --- AZ91 --- magnesium alloys --- creep --- high pressure die casting --- additive manufacturing --- Ti-6Al-4V --- LENS --- mechanical characterization --- twin roll casting --- magnesium alloy --- calcium --- Mg-Zn-Al-Ca alloy --- texture --- flow curve --- processing map --- honeycomb structure --- additive manufacturing --- laser engineered net shaping --- LENS --- Ti6Al4V alloy --- energy absorption --- dynamic tests --- solidification thermal parameters --- Cu-Al-Ni-Fe bronze alloys --- hardness --- microhardness --- specific intermetallics --- MAX phase --- Ti3SiC2 --- composite --- high energy ball milling --- spark plasma sintering --- structure --- mechanical properties --- deformation behavior --- tribaloy-type alloy --- CoCrMoSi alloy coatings --- T-800 alloy --- Laves phase --- Laser Engineered Net Shaping (LENSTM) --- electron microscopy (in situ SEM) --- delamination --- metal matrix composites (MMCs) --- z-pinning

Surface Modification to Improve Properties of Materials

Author:
ISBN: 9783038977964 9783038977971 Year: Pages: 356 DOI: 10.3390/books978-3-03897-797-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

This book contains selected contributions on surface modification to improve the properties of solid materials. The surface properties are tailored either by functionalization, etching, or deposition of a thin coating. Functionalization is achieved by a brief treatment with non-equilibrium gaseous plasma containing suitable radicals that interact chemically with the material surface and thus enable the formation of rather stable functional groups. Etching is performed in order to modify the surface morphology. The etching parameters are selected in such a way that a rich morphology of the surfaces is achieved spontaneously on the sub-micrometer scale, without using masks. The combination of adequate surface morphology and functionalization of materials leads to superior surface properties which are particularly beneficial for the desired response upon incubation with biological matter. Alternatively, the materials are coated with a suitable thin film that is useful in various applications from food to aerospace industries.

Keywords

sulphur hexafluoride (SF6) plasma --- tetrafluoromethane (CF4) plasma --- polymer polyethylene terephthalate (PET) --- surface modification --- functionalization and wettability --- optical emission spectroscopy (OES) --- electronegativity --- PVD nanocomposite coatings --- aluminum die casting --- tool life --- tribological performance --- plasma surface modification --- polymer polypropylene --- neutral oxygen atom density --- initial surface functionalization --- food packaging --- wettability --- tantalum --- hardness --- gradient nanostructured layer --- grain size --- residual stress --- dry wear behavior --- surface texture --- surface treatment --- Ti6Al4V alloy --- tribology --- biology --- materials characterization --- shot-peening --- image processing --- TIG welding --- aluminum 6061-T6 --- special surfaces --- wettability --- superhydrophobic --- cell cultures --- anti-bio adhesion --- self-cleaning fabrics --- polyethylene granules --- low-pressure MW air plasma --- optical emission spectroscopy --- XPS --- laser cobalt catalytic probe --- Alloy 718 --- surface hardness --- surface residual stress --- grain size --- fretting failure --- corrosion --- antimicrobial film --- nisin --- physical properties --- plasma treatment polyvinyl alcohol --- surface characterization --- microhole-textured tool --- CaF2 --- micro-EDM --- tribological properties --- egg shell --- stearic acid --- modification --- particle characterization --- epoxy composites --- dynamic mechanical analysis --- adhesion effectiveness --- Poly(tetrafluoroethylene) --- Teflon --- plasma treatment --- zeta potential --- surface energy --- contact angle measurement --- lectin --- bovine serum albumin --- adsorption --- cellulose thin film --- polystyrene --- gold --- surface plasmon resonance spectroscopy --- silver nanoparticles --- laser ablation in liquids --- laser synthesis of colloidal nanoparticles solution --- nanoparticle-impregnated paper --- antimicrobial activity --- fiber fines --- sheet forming --- vacuum filtration --- pulse power --- electrical stimulation --- electric field --- mushroom --- L. edodes --- Lyophyllum deeastes Sing --- surface modification --- porous silicon --- silicon surface --- carbonization --- oxidation --- aluminum --- alloy --- duralumin --- etching --- surface texture --- porous-like --- adhesive bonding --- superhydrophobic --- porous silicon --- visible light assisted organosilanization --- solid state NMR --- XPS --- ToF-SIMS --- atmospheric pressure plasma jets --- plasma polymerization --- superhydrophobicity --- wetting --- biomaterial --- polymer --- plasma --- functionalization --- surface properties --- thrombosis --- hemocompatibility --- endothealization --- vascular graft --- biocompatibility --- endothelial cells --- surface properties --- nanostructuring --- functionalization --- grafting

Listing 1 - 7 of 7
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (7)


License

CC by-nc-nd (7)


Language

eng (4)

english (3)


Year
From To Submit

2019 (4)

2018 (3)