Search results: Found 1

Listing 1 - 1 of 1
Sort by
Neural Masses and Fields: Modelling the Dynamics of Brain Activity

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194278 Year: Pages: 237 DOI: 10.3389/978-2-88919-427-8 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46

Export citation

Choose an application


Biophysical modelling of brain activity has a long and illustrious history and has recently profited from technological advances that furnish neuroimaging data at an unprecedented spatiotemporal resolution. Neuronal modelling is a very active area of research, with applications ranging from the characterization of neurobiological and cognitive processes, to constructing artificial brains in silico and building brain-machine interface and neuroprosthetic devices. Biophysical modelling has always benefited from interdisciplinary interactions between different and seemingly distant fields; ranging from mathematics and engineering to linguistics and psychology. This Research Topic aims to promote such interactions by promoting papers that contribute to a deeper understanding of neural activity as measured by fMRI or electrophysiology.In general, mean field models of neural activity can be divided into two classes: neural mass and neural field models. The main difference between these classes is that field models prescribe how a quantity characterizing neural activity (such as average depolarization of a neural population) evolves over both space and time as opposed to mass models, which characterize activity over time only; by assuming that all neurons in a population are located at (approximately) the same point. This Research Topic focuses on both classes of models and considers several aspects and their relative merits that: span from synapses to the whole brain; comparisons of their predictions with EEG and MEG spectra of spontaneous brain activity; evoked responses, seizures, and fitting data - to infer brain states and map physiological parameters.

Listing 1 - 1 of 1
Sort by
Narrow your search


Frontiers Media SA (1)


CC by (1)


english (1)

From To Submit

2015 (1)