Search results: Found 21

Listing 11 - 20 of 21 << page
of 3
>>
Sort by
Electric Power Conversion

Author:
ISBN: 9781838803551 9781838803568 9781789840469 Year: Pages: 228 DOI: 10.5772/intechopen.73992 Language: English
Publisher: IntechOpen
Subject: Electrical and Nuclear Engineering
Added to DOAB on : 2019-10-03 07:51:53

Loading...
Export citation

Choose an application

Abstract

The introductory chapter to this book is like traveling in a time machine into past, present, and future of electric power conversion. Archeological discoveries are being transformed into the discoveries of the future. The book is an incursion to electric power conversion through electromechanical power conversion, static power conversion, and applications in the field. Each of the above-mentioned sections analyzes the knowledge gained using the experimental results of valuable research projects. Novice readers will learn how energy is converted adequately and adapted to different consumers. Advanced readers will discover different kinds of modern solutions and tendencies in the field of electric power conversion.

Micro-grids - Applications, Operation, Control and Protection

Author:
ISBN: 9781789840612 9781789840629 9781789854428 Year: Pages: 144 DOI: 10.5772/intechopen.77550 Language: English
Publisher: IntechOpen
Subject: Electrical and Nuclear Engineering
Added to DOAB on : 2019-10-03 07:51:53

Loading...
Export citation

Choose an application

Abstract

The integration of recent and emerging energy technologies in the existing electric grid requires modifications in several aspects of the grid, including its architecture, protection, operation, and control. Micro-grid provides a solution for integrating distributed energy resources such as renewable energy generation, energy storage systems, electric vehicles, controllable loads, etc. and delivers flexibility, security, and reliability by operating in both grid-connected and isolated modes. This book provides an overview of micro-grid solutions, applications, and implementations. State-of-the-art methods for micro-grid operation, optimization, and control are presented. Distributed energy resources and their interactions in micro-grids are also studied. In addition, micro-grid designs, architectures, and standards are covered, as are micro-grid protection strategies and schemes for different operation modes.

Africa-EU Renewable Energy Research and Innovation Symposium 2018 (RERIS 2018)

Authors: --- ---
Book Series: Springer Proceedings in Energy ISBN: 9783319934389 Year: Pages: 151 DOI: 10.1007/978-3-319-93438-9 Language: English
Publisher: Springer Nature
Subject: Economics --- Science (General) --- Agriculture (General)
Added to DOAB on : 2020-02-04 11:21:09
License:

Loading...
Export citation

Choose an application

Abstract

This open access book presents the proceedings of the 2nd Africa-EU Renewable Energy Research and Innovation Symposium (RERIS 18), held in Maseru, Lesotho in January 2018. The symposium aimed to foster research cooperation on renewable energy between Africa and Europe – in academia, as well as the private and public sectors. Addressing thematic areas such as • Grid-connected renewable energy; • Decentralised renewable and household energy solutions; • Energy socioeconomics; and • Promotion of energy research, innovation, education and entrepreneurship, the book brings together contributions from academics and practitioners from the EU and Africa to enable mutual learning and knowledge transfer – a key factor in boosting sustainable development in the African renewable energy market. It also plays a significant role in promoting African renewable energy research, which helps to secure energy supply in both rural and urban areas and to increase generation capacities and energy system resilience. This book is an invaluable resource for academics and professionals across the renewable energy spectrum.

eIoT

Authors: --- ---
ISBN: 9783030104276 Year: Pages: 160 DOI: 10.1007/978-3-030-10427-6 Language: English
Publisher: Springer Nature
Subject: Agriculture (General) --- Computer Science
Added to DOAB on : 2020-02-05 11:21:11
License:

Loading...
Export citation

Choose an application

Abstract

This open access book explores the collision between the sustainable energy transition and the Internet of Things (IoT). In that regard, this book’s arrival is timely. Not only is the Internet of Things for energy applications, herein called the energy Internet of Things (eIoT), rapidly developing but also the transition towards sustainable energy to abate global climate is very much at the forefront of public discourse. It is within the context of these two dynamic thrusts, digitization and global climate change, that the energy industry sees itself undergoing significant change in how it is operated and managed. This book recognizes that they impose five fundamental energy management change drivers: 1.) the growing demand for electricity, 2.) the emergence of renewable energy resources, 3.) the emergence of electrified transportation, 4.) the deregulation of electric power markets, 5.) and innovations in smart grid technology. Together, they challenge many of the assumptions upon which the electric grid was first built. The goal of this book is to provide a single integrated picture of how eIoT can come to transform our energy infrastructure. This book links the energy management change drivers mentioned above to the need for a technical energy management solution. It, then, describes how eIoT meets many of the criteria required for such a technical solution. In that regard, the book stresses the ability of eIoT to add sensing, decision-making, and actuation capabilities to millions or perhaps even billions of interacting “smart" devices. With such a large scale transformation composed of so many independent actions, the book also organizes the discussion into a single multi-layer energy management control loop structure. Consequently, much attention is given to not just network-enabled physical devices but also communication networks, distributed control & decision making, and finally technical architectures and standards. Having gone into the detail of these many simultaneously developing technologies, the book returns to how these technologies when integrated form new applications for transactive energy. In that regard, it highlights several eIoT-enabled energy management use cases that fundamentally change the relationship between end users, utilities, and grid operators. Consequently, the book discusses some of the emerging applications for utilities, industry, commerce, and residences. The book concludes that these eIoT applications will transform today’s grid into one that is much more responsive, dynamic, adaptive and flexible. It also concludes that this transformation will bring about new challenges and opportunities for the cyber-physical-economic performance of the grid and the business models of its increasingly growing number of participants and stakeholders.

Electrical Power and Energy Systems for Transportation Applications

Authors: ---
ISBN: 9783038422426 9783038422075 Year: Pages: XX, 572 DOI: 10.3390/books978-3-03842-207-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemical Technology
Added to DOAB on : 2017-07-26 13:30:46
License:

Loading...
Export citation

Choose an application

Abstract

Electrical power and energy systems are at the forefront of application developments in renewable energy, smart grids, electric aircrafts, electric and hybrid vehicles and much more. The associated technologies and control methods are crucial to achieving global targets in energy efficiency and low-carbon operations, and will also contribute to key areas such as energy security. The greatest challenges occur when we combine new technologies at large-scale and often complex system level. The Special Edition will cover theoretical developments with special emphasis on applications in electrical power and energy systems. Topics covered include:Renewable Energy Systems: Energy management; hybrid systems; distributed systems; renewable sources and integration; transient energy storage, charging networks.Electrical Machines, Drives and Applications: AC and DC machines and drives; multiscale systems modeling; remote monitoring and diagnosis; electric and hybrid vehicles; energy conversion, vehicle to grid interaction.Power Electronic Systems: Converters and emerging technologies; modeling simulation and control; power factor correction; power supplies; active filters; reliability and fault tolerance.Electrical Power Generation Systems: Modeling and simulation of electrical power systems; load management; power quality; distribution reliability; distributed and islanded power systems, sensor networks, communication and control.Electrical Power Systems Modeling and Control: Modeling and control methodologies and applications; intelligent systems; optimization and advanced heuristics; adaptive systems; robust control.

European Guide to Power System Testing

Authors: --- ---
ISBN: 9783030422745 Year: Pages: 132 DOI: 10.1007/978-3-030-42274-5 Language: English
Publisher: Springer Nature
Subject: Agriculture (General)
Added to DOAB on : 2020-06-17 00:00:25
License:

Loading...
Export citation

Choose an application

Abstract

This book is an open access book. This book provides an overview of the ERIGrid validation methodology for validating CPES, a holistic power system testing method. It introduces readers to corresponding simulation and laboratory-based tools, including co-simulation, real-time simulation, and hardware-in-the-loop. Selected test cases and validation examples are provided, in order to support the theory discussed. The book begins with an introduction to current power system testing methods and an overview of the ERIGrid system-level validation approach. It then moves on to discuss various validation methods, concepts and tools, including simulation and laboratory-based assessment methods. The book presents test cases and validation examples of the proposed methodologies and summarises the lessons learned from the holistic validation approach. In the final section of the book, the educational aspects of these methods, the outlook for the future, and overall conclusions are discussed. Given its scope, the book will be of interest to researchers, engineers, and laboratory personnel in the fields of power systems and smart grids, as well as undergraduate and graduate students studying related engineering topics.

Plug-in Hybrid Electric Vehicle (PHEV)

Author:
ISBN: 9783039214532 9783039214549 Year: Pages: 230 DOI: 10.3390/books978-3-03921-454-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Climate change, urban air quality, and dependency on crude oil are important societal challenges. In the transportation sector especially, clean and energy efficient technologies must be developed. Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have gained a growing interest in the vehicle industry. Nowadays, the commercialization of EVs and PHEVs has been possible in different applications (i.e., light duty, medium duty, and heavy duty vehicles) thanks to the advances in energy storage systems, power electronics converters (including DC/DC converters, DC/AC inverters, and battery charging systems), electric machines, and energy efficient power flow control strategies. This book is based on the Special Issue of the journal Applied Sciences on “Plug-In Hybrid Electric Vehicles (PHEVs)”. This collection of research articles includes topics such as novel propulsion systems, emerging power electronics and their control algorithms, emerging electric machines and control techniques, energy storage systems, including BMS, and efficient energy management strategies for hybrid propulsion, vehicle-to-grid (V2G), vehicle-to-home (V2H), grid-to-vehicle (G2V) technologies, and wireless power transfer (WPT) systems.

Keywords

battery power --- convex optimization --- dynamic programming --- engine-on power --- plug-in hybrid electric vehicle --- simulated annealing --- electric vehicle --- open-end winding --- dual inverter --- voltage vector distribution --- power sharing --- energy management --- range-extender --- CO2 --- air quality --- mobility needs --- LCA --- Paris Agreement --- hybrid energy storage system --- lithium-ion battery --- lithium-ion capacitor --- lifetime model --- power distribution --- state of health estimation --- adaptive neuron-fuzzy inference system (ANFIS) --- group method of data handling (GMDH) --- artificial neural network (ANN) --- electric vehicles (EVs) --- capacity degradation --- lithium-ion battery --- time-delay input --- interleaved multiport converte --- multi-objective genetic algorithm --- hybrid electric vehicles --- losses model --- wide bandgap (WBG) technologies --- Energy Storage systems --- LCA --- Well-to-Wheel --- electric vehicle --- plug-in hybrid --- electricity mix --- consequential --- attributional --- marginal --- system modelling --- energy system --- meta-analysis --- parallel hybrid electric vehicle --- regenerative braking --- fuel consumption characteristics --- energy efficiency --- state of charge --- lithium polymer battery --- electric vehicle --- Plugin Hybrid electric vehicle --- Li-ion battery --- modelling --- measurements --- state of charge --- strong track filter --- modified one-state hysteresis model --- Li(Ni1/3Co1/3Mn1/3)O2 battery --- energy management strategy --- Markov decision process (MDP) --- plug-in hybrid electric vehicles (PHEVs) --- Q-learning (QL) --- reinforcement learning (RL) --- novel propulsion systems --- emerging power electronics --- including wide bandgap (WBG) technology --- emerging electric machines --- efficient energy management strategies for hybrid propulsion systems --- energy storage systems --- life-cycle assessment (LCA)

Sustainable Energy Systems: From Primary to End-Use

Authors: --- ---
ISBN: 9783039210961 9783039210978 Year: Pages: 314 DOI: 10.3390/books978-3-03921-097-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book focuses on sustainable energy systems. While several innovative and alternative concepts are presented, the topics of energy policy, life cycle assessment, thermal energy, and renewable energy also play a major role. Models on various temporal and geographical scales are developed to understand the conditions of technical as well as organizational change. New methods of modeling, which can fulfil technical and physical boundary conditions and nevertheless consider economic environmental and social aspects, are also developed.

Keywords

Active Disturbance Rejection Control --- Probabilistic Robustness --- Monte Carlo --- secondary air regulation --- areal grey relational analysis --- fuzzy rough set --- game theory --- AHP --- uncertainty analysis --- coal-fired power unit --- renewable energy --- biomass --- torrefaction --- grindability --- rotary reactor --- generation system scheduling --- integrated model --- basic plan for long-term electricity supply and demand --- forecasting model for electricity demand --- biomass --- Pinus pinaster --- fuel --- heating value --- fuelwood value index --- energy density --- ash recovery --- peach --- Energy Life-Cycle Assessment --- post-harvest --- fuzzy logic control --- artificial neural networks control --- tidal stream generator --- swell effect disturbance --- doubly fed induction generator --- maximum power point tracking --- capacity investment --- market power --- wind resources --- dynamic planning --- stochastic approach --- levelized cost of energy --- photovoltaic with energy storage system --- HOMER simulation --- LCOE comparison --- sensitivity analysis --- transient impact --- renewable energy source penetration --- power system stability --- robust optimization --- renewable energy --- flexibility --- deficit --- uncertainty --- flexible resource --- energy storage systems --- active power harmonics filter --- electrostatic devices --- hysteresis switching --- op-amp --- power electronics --- power supply reliability --- electricity --- manufacturing industry --- choice experiment --- willingness to pay --- nexus concept --- energy modelling --- resource efficiency --- renewable energy --- low-carbon economy --- forecasting --- multilayer perception --- photovoltaic --- sustainable energy --- pseudo-Huber loss --- energy from biomass --- textile industrial sector --- alternative energy --- SWOT analysis --- energy costs --- Internet of Things --- thermodynamic cycle concepts --- sustainability --- modified cycle concepts --- efficiency --- energy systems --- renewable energies --- wind power plants --- hollow rollers --- large bearings

Power Electronics in Renewable Energy Systems

Authors: ---
ISBN: 9783039210442 9783039210459 Year: Pages: 604 DOI: 10.3390/books978-3-03921-045-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book offers a collection of 30 scientific papers which address the problems associated with the use of power electronic converters in renewable energy source-based systems. Relevant problems associated with the use of power electronic converters to integrate renewable energy systems to the power grid are presented. Some of the covered topics relate to the integration of photovoltaic and wind energy generators into the rest of the system, and to the use of energy storage to mitigate power fluctuations, which are a characteristic of renewable energy systems. The book provides a good overview of the abovementioned topics.

Keywords

modular multilevel converter --- battery energy storage system --- state-of-charge balancing --- second-life battery --- multi-energy complementary --- microgrid --- demand response --- operation optimization --- electricity price --- peak-current-mode control --- dynamic modeling --- duty-ratio constraints --- discontinuous conduction mode --- FACTS devices --- active power filter --- static compensator --- control strategies --- grid-connected converter --- SPWM --- SVM --- maximum power point tracking --- open circuit voltage --- perturb and observe --- thermoelectric generator --- two-stage photovoltaic power --- virtual synchronous generator --- adaptive-MPPT (maximum power point tracking) --- improved-VSG (virtual synchronous generator) --- power matching --- failure zone --- governor --- frequency regulation --- inverter --- voltage-type control --- static frequency characteristics --- grid-connected converter --- adaptive resonant controller --- PLL --- impedance analysis --- distorted grid --- digital signal processor (DSP) TMS320F28335 --- grid-connected inverter --- internal model --- linear quadratic regulator --- LCL filter --- photovoltaic systems --- multilevel power converter --- soft switching --- selective harmonic mitigation --- phase shifted --- voltage cancellation --- adaptive control --- sliding mode control --- speed control --- wind energy system --- microgrid (MG) --- droop control --- washout filter --- hardware in the loop (HIL) --- active front-end converter --- back-to-back converter --- permanent magnet synchronous generator (PMSG) --- THD --- type-4 wind turbine --- wind energy system --- Opal-RT Technologies® --- synchronization --- adaptive notch filter (ANF) --- phase-locked loop (PLL) --- wind power prediction --- phase space reconstruction --- multivariate linear regression --- cloud computing --- time series --- multiple VSGs --- oscillation mitigation --- coordinated control --- small-signal and transient stability --- coordination control --- energy storage --- grid support function --- inertia --- photovoltaic --- virtual synchronous generator --- weak grid --- parallel inverters --- oscillation suppression --- notch filter --- impedance reshaping --- boost converter --- peak-current-mode control --- dynamic modeling --- discontinuous operation mode --- doubly-fed induction generator --- short-circuit fault --- frequency regulation --- variable power tracking control --- improved additional frequency control --- variable coefficient regulation --- inertia and damping characteristics --- generator speed control --- electrical power generation --- turbine and generator --- grid-connected converter --- organic Rankine cycle --- renewable energy --- multiport converter (MPC) --- single ended primary inductor converter (SEPIC) --- multi-input single output (MISO) --- renewable power system --- coupled oscillators --- virtual impedance --- synchronization --- power converters --- droop control --- virtual admittance --- distributed generation --- energy --- renewable energy --- microgrids --- Energy Internet --- energy router --- microgrid --- electric vehicle --- PV --- battery-energy storage --- DC-AC power converters --- impedance emulation --- stability analysis --- power-hardware-in- the-loop --- photovoltaic generators --- maximum power point tracking --- step size --- perturbation frequency --- source and load impedance --- transient dynamics --- stability --- grid synchronization --- power electronics --- power grid --- inverter --- grid-connected --- microgrid --- experiment --- modules --- synchronverter --- power ripple elimination --- resonant controller --- unbalanced power grid --- ROCOF --- PLL --- error --- low inertia --- VSC --- n/a

Applications of Power Electronics

Authors: --- ---
ISBN: 9783038979746 9783038979753 Year: Volume: 1 Pages: 476 DOI: 10.3390/books978-3-03897-975-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Listing 11 - 20 of 21 << page
of 3
>>
Sort by
Narrow your search