Search results: Found 12

Listing 11 - 12 of 12 << page
of 2
>>
Sort by
Dinophysis Toxins: Distribution, Fate in Shellfish and Impacts

Authors: ---
ISBN: 9783039213634 9783039213641 Year: Pages: 376 DOI: 10.3390/books978-3-03921-364-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Public Health
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Several species of Dinophysis produce one or two groups of lipophilic toxins: okadaic acid (OA) and its derivatives; or the dinophysistoxins (DTXs) (also known as diarrhetic shellfish poisons or DSP toxins) and pectenotoxins (PTXs). DSP toxins are potent inhibitors of protein phosphatases, causing gastrointestinal intoxication in consumers of contaminated seafood. Forty years after the identification of Dinophysis as the causative agent of DSP in Japan, contamination of filter feeding shellfish exposed to Dinophysis blooms is recognized as a problem worldwide. DSP events affect public health and cause considerable losses to the shellfish industry. Costly monitoring programs are implemented in regions with relevant shellfish production to prevent these socioeconomic impacts. Harvest closures are enforced whenever toxin levels exceed regulatory limits (RLs). Dinophysis species are kleptoplastidic dinoflagellates; they feed on ciliates (Mesodinium genus) that have previously acquired plastids from cryptophycean (genera Teleaulax, Plagioselmis, and Geminigera) nanoflagellates. The interactions of Dinophysis with different prey regulate their growth and toxin production. When Dinophysis cells are ingested by shellfish, their toxins are partially biotransformed and bioaccumulated, rendering the shellfish unsuitable for human consumption. DSP toxins may also affect shellfish metabolism. This book covers diverse aspects of the abovementioned topics—from the laboratory culture of Dinophysis and the kinetics of uptake, transformation, and depuration of DSP toxins in shellfish to Dinophysis population dynamics, the monitoring and regulation of DSP toxins, and their impact on the shellfish industry in some of the aquaculture regions that are traditionally most affected, namely, northeastern Japan, western Europe, southern Chile, and New Zealand.

Keywords

harmful algal bloom --- Diarrheic Shellfish Poisoning --- okadaic acid --- toxin accumulation --- toxin vectors --- trophic transfer --- Brazil --- diarrhetic shellfish toxins (DST) --- Mytilus galloprovincialis --- DST accumulation --- DST esterification --- suspended particulate matter (SPM) --- harmful algal blooms --- okadaic acid --- Argopecten irradians --- transcriptomic response --- deep sequencing --- pectenotoxins --- surf clam --- accumulation --- biotransformation --- depuration --- diarrhetic shellfish toxins --- accumulation --- dinophysistoxin --- Japanese scallop --- dinophysis --- LC/MS/MS --- statistical analysis --- Dinophysis --- HAB monitoring --- DSP toxins --- aquaculture --- shellfish toxicity --- human health --- time-series --- seasonality --- Scotland --- DSP toxins --- bivalves --- mussel --- resistance --- RNA-Seq --- qPCR --- metabolism --- defense --- immunity --- DSP toxins --- pectenotoxins --- Dinophysis acuminata --- Mesodinium rubrum --- bacterial community --- high throughput sequencing --- diarrhetic shellfish toxins --- Dinophysis --- wild harvest --- bivalve shellfish --- pipis (Plebidonax deltoides) --- Sydney rock oyster (Saccostrea glomerata) --- okadaic acid --- pectenotoxins --- Dinophysis toxins --- accumulation --- digestion --- biotransformation --- compartmentalization --- depuration --- kinetics --- Dinophysis --- diarrhetic shellfish poisoning --- marine toxins --- pectenotoxin --- okadaic acid --- dinophysistoxin --- okadaic acid --- pectenotoxins --- Dinophysis --- D. acuminata-complex --- D. caudata --- Argopecten purpuratus --- Dinophysis --- Mesodinium --- cryptophytes --- predator-prey preferences --- Diarrhetic Shellfish Toxins (DST) --- pectenotoxins (PTXs) --- mixotrophic cultures --- mass culture conditions --- Dinophysis acuminata --- Protoceratium reticulatum --- Reloncaví Fjord --- OMI analysis --- WitOMI analysis --- Mesodinium cf. rubrum --- El Niño Southern Oscillation --- Southern Annual Mode --- Dinophysis acuta --- Dinophysis acuminata --- DSP --- physical–biological interactions --- niche partitioning --- climatic anomaly --- Dinophysis acuminata --- Mesodinium rubrum --- lysate --- organic matter --- diarrhetic shellfish poisoning --- okadaic acid --- dinophysistoxin --- pectenotoxins --- dinophysis --- DSP --- toxins --- OA --- DTX-2 --- PTXs --- Dinophysis acuminata --- dinophysistoxins --- pectenotoxins --- Port Underwood --- New Zealand --- Dinophysis --- Diarrhetic shellfish toxins --- marine biotoxins --- blooms --- n/a

Understanding Game-based Approaches for Improving Sustainable Water Governance: The Potential of Serious Games to Solve Water Problems

Authors: --- --- --- --- et al.
ISBN: 9783039287628 / 9783039287635 Year: Pages: 272 DOI: 10.3390/books978-3-03928-763-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The sustainable governance of water resources relies on processes of multi-stakeholder collaborations and interactions that facilitate knowledge co-creation and social learning. Governance systems are often fragmented, forming a barrier to adequately addressing the myriad of challenges affecting water resources, including climate change, increased urbanized populations, and pollution. Transitions towards sustainable water governance will likely require innovative learning partnerships between public, private, and civil society stakeholders. It is essential that such partnerships involve vertical and horizontal communication of ideas and knowledge, and an enabling and democratic environment characterized by informal and open discourse. There is increasing interest in learning-based transitions. Thus far, much scholarly thinking and, to a lesser degree, empirical research has gone into understanding the potential impact of social learning on multi-stakeholder settings. The question of whether such learning can be supported by forms of serious gaming has hardly been asked. This Special Issue critically explores the potential of serious games to support multi-stakeholder social learning and collaborations in the context of water governance. Serious games may involve simulations of real-world events and processes and are challenge players to solve contemporary societal problems; they, therefore, have a purpose beyond entertainment. They offer a largely untapped potential to support social learning and collaboration by facilitating access to and the exchange of knowledge and information, enhancing stakeholder interactions, empowering a wider audience to participate in decision making, and providing opportunities to test and analyze the outcomes of policies and management solutions. Little is known about how game-based approaches can be used in the context of collaborative water governance to maximize their potential for social learning. While several studies have reported examples of serious games, there is comparably less research about how to assess the impacts of serious games on social learning and transformative change.

Keywords

simulations --- serious games --- Q-method --- integrated water resources management --- policy analysis --- nexus --- participatory modelling --- serious game --- system dynamics --- water-food-land-energy-climate --- active learning --- drinking water --- role-play --- stakeholder collaboration --- Water Safety Plan --- water supply --- serious games --- social simulation --- social learning --- relational practices --- river basin management --- water governance --- multi-party collaboration --- stakeholders --- experimental social research --- Maritime Spatial Planning (MSP) --- stakeholder participation --- serious game --- Blue Growth --- Good Environmental Status --- serious games (SGs) --- water management --- value change --- transcendental values --- social equity --- sustainability --- Schwartz’s Value Survey (SVS) --- Integrated Water Resource Management (IWRM) --- psychosocial perspectives --- decision-making processes --- assessment --- educational videogames --- online games --- water --- ecology education --- drinking water management --- peri-urban --- institutions --- gaming-simulation --- groundwater --- capacity building --- serious games --- planning support systems --- knowledge co-creation --- sustainability --- maritime spatial planning --- serious gaming --- flood --- urban --- rural --- infrastructure --- decision making --- serious games --- role-playing games --- learning-based intervention --- transformative change --- social learning --- aquaculture --- Mekong Delta --- mangrove --- gamification --- serious games --- water governance --- stakeholder participation --- sustainability --- game-based learning --- integrated water resource management (IWRM) --- natural resource management --- simulation --- serious game --- social learning --- stakeholder collaboration --- sustainability --- water governance

Listing 11 - 12 of 12 << page
of 2
>>
Sort by