Search results:
Found 2
Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Mycotoxins are secondary metabolites produced by several fungal species. They can contaminate human food and animal feed, and have been a threat for thousands of years. The gastrointestinal tract is the first target when ingesting mycotoxin-contaminated food or feed. As unlikely as it sounds, the investigations concerning the effects of mycotoxins on the intestine are still in their early stages. This book gathers the most recent advances related to the characterization of the intestinal toxicity of mycotoxins. Substantial data assembled on the damage caused to a number of histological structures and functions of the intestine remove any remaining doubt about this organ being a primary target for the toxicity of mycotoxins. An interesting overview of the detrimental effects of mycotoxins on the gut-hosted microbiota—now regarded as a fully-fledged organ associated with the gut—is also given. Finally, outstanding contributions in this book address questions relating to the suitability of current regulations to protect against alterations of the intestine, and to the efficacy assessment of new detoxification strategies using the intestinal toxicity of mycotoxins as a relevant endpoint.
mice --- aflatoxin B1 --- intestinal bacterial flora --- response --- Clostridium sp. WJ06 --- deoxynivalenol --- pig --- intestinal morphology --- microbial diversity --- aflatoxin M1 --- ochratoxin A --- intestinal epithelial cells --- tight junction --- permeability --- ileum --- jejunum --- deoxynivalenol --- piglet --- contaminated feed --- tight junction --- aflatoxin B1 --- small intestine --- histopathological lesions --- ultrastructural changes --- toll-like receptors --- T-2 toxin --- enteric nervous system --- pig --- vasoactive intestinal polypeptide --- mycotoxins --- zearalenone --- deoxynivalenol --- histology --- ultrastructure --- large intestine --- pig --- Claviceps --- liver --- digestive tract --- mycotoxin --- sclerotia --- ergot alkaloids --- toxicity --- deoxynivalenol --- Saccharomyces cerevisiae boulardii CNCM I-1079 --- intestine --- transcriptome --- inflammation --- oxidative stress --- lipid metabolism --- fumonisin --- microbiota --- pigs --- MiSeq 16S rDNA sequencing --- intestinal microbiota --- hydrogen-rich water --- lactulose --- Fusarium mycotoxins --- piglets --- functional oligosaccharides --- mycotoxins --- swine --- explant technique --- intestinal morphology --- goblet cells --- deoxynivalenol --- zearalenone --- pig --- colon microbiota --- Lactobacillus --- detoxification --- zearalenone --- doses --- caecal water --- genotoxicity --- pre-pubertal gilts --- atlantic salmon --- deoxynivalenol --- feed --- intestine --- PCR --- proliferating cell nuclear antigen --- suppressor of cytokine signaling --- tight junctions --- Zearalenone --- N-acetylcysteine --- SIEC02 cells --- Mitochondrial apoptosis --- n/a
Choose an application
Mycotoxins are considered the most frequently occurring natural contaminants in human and animal diets. Considering their potential toxic and carcinogenic effects, mycotoxin exposure assessment has particular importance in the context of health risk assessment. The magnitude of a given exposure allows the derivation of the associated risk and the potential for the establishment of a disease. Although food ingestion is considered a major route of human exposure to mycotoxins, other contexts may also result in exposure, such as specific occupational environments where exposure to organic dust also occurs due to the handling of organic materials. Animals could be exposed to mycotoxins through consumption of contaminated feed, subsequently entering in the food chain and thus constituting a source of exposure to humans. Human biomonitoring is considered a new frontier for the establishment of the human internal exposure to mycotoxins. Although several studies have summarized the potential outcomes associated with mycotoxin exposure, major gaps in data remain in recognizing the mycotoxins that are the cause of diseases. This book contributes provides research that supports the anticipation of potential consequences of the exposure of humans and animals to mycotoxins, future risk assessments, and the establishment of preventive measures.
Aflatoxin B1 --- Lactobacillus casei Shirota --- Alloprevotella --- metagenomic sequencing --- microbiota --- Poultry --- Turkey --- Transcriptome --- Aflatoxin B1 --- Cecal Tonsil --- Cecum --- RNAseq --- mycotoxins --- occupational exposure --- swine production --- biomonitoring --- mycotoxins mixture --- modified HSCAS --- absorption --- T-2 toxin --- broilers --- zearalenone --- doses --- intestinal microbiome --- intestinal mycobiome --- pre-pubertal gilts --- Fusarium mycotoxins co-contamination --- ochratoxin A --- feed prevalence and safety --- HPLC analysis --- lab-on-chip --- optical biosensors --- Fab’ --- Aflatoxin M1 --- asymmetric Mach–Zehnder interferometer --- limit of detection --- affinity --- risk assessment --- total diet study --- aflatoxin B1 --- ochratoxin A --- fumonisins --- children --- Vietnam --- fumonisin B1 --- piglet --- liver --- lipids --- blood serum --- oxidation --- clinical chemistry --- histopathology --- phospholipids --- triiodothyronine --- HT-2 toxin --- cytotoxicity --- Kashin-Beck disease --- ochratoxin A --- mitigation --- mycotoxin binding --- yeast cell wall extracts --- modelling --- mycotoxins --- food consumption --- urinary biomarkers --- public health --- n/a
Listing 1 - 2 of 2 |
Sort by
|