Search results:
Found 4
Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Climate change affects global and regional water cycling, as well as surficial and subsurface water availability. These changes have increased the vulnerabilities of ecosystems and of human society. Understanding how climate change has affected water resource variability in the past and how climate change is leading to rapid changes in contemporary systems is of critical importance for sustainable development in different parts of the world. This Special Issue focuses on “Water Resource Variability and Climate Change” and aims to present a collection of articles addressing various aspects of water resource variability as well as how such variabilities are affected by changing climates. Potential topics include the reconstruction of historic moisture fluctuations, based on various proxies (such as tree rings, sediment cores, and landform features), the empirical monitoring of water variability based on field survey and remote sensing techniques, and the projection of future water cycling using numerical model simulations.
Choose an application
Choose an application
The term zeolite is based on Greek words for “to boil” and “stone” and it is already known since more than 250 years. At that time, the Swedish mineralogist A.F. Cronstedt (1722-1765) observed the formation of large amount of steam when heating the material Stilbite pointing to his porous character and adsorption capacity. At present, over 200 different zeolite frameworks have been identified. In general, zeolites are crystalline aluminosilicates with defined micropore structure. Within zeolites, a good number of elements can be isomorphously incorporated and much more elements or their oxides can be hosted by zeolites. Besides their big variety in size of pore mouths, channels, crossings etc. leading also to their designation as molecular sieves and uses in membrane applications, zeolites reveal Brønsted and Lewis acidic properties that can be varied in wide limits as well. Thus, they deserve the name “solid acids”. Zeolites have an immense importance in diverse industrial applications as catalysts and adsorbents, for example in refinery industry, chemical industry, detergent sector or for solar thermal collectors and adsorption refrigerationIn this special issue we aim at new developments and recent progress with respect to zeolite-catalyzed chemical reactions, adsorption applications and membrane uses as well as improved syntheses strategies and characterization techniques.
Choose an application
Listing 1 - 4 of 4 |
Sort by
|