Search results: Found 12

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Mobile Mapping

Author:
ISBN: 9789048535217 Year: Pages: 346 Language: English
Publisher: Amsterdam University Press
Subject: Media and communication --- Computer Science --- Sociology --- Law
Added to DOAB on : 2020-05-04 10:28:15
License:

Loading...
Export citation

Choose an application

Abstract

This book argues for a theory of mobile mapping, a situated and spatial approach towards researching how everyday digital mobile media practices are bound up in global systems of knowledge and power. Drawing from literature in media studies and geography - and the work of Michel Foucault and Doreen Massey - it examines how geographical and historical material, social, and cultural conditions are embedded in the way in which contemporary (digital) cartographies are read, deployed, and engaged. This is explored through seventeen walking interviews in Hong Kong and Sydney, as potent discourses like cartographic reason continue to transform and weave through the world in ways that haunt mobile mapping and bring old conflicts into new media. In doing so, Mobile Mapping offers an interdisciplinary rethinking about how multiple translations of spatial knowledges between rational digital epistemologies and tacit ways of understanding space and experience might be conceptualized and researched.

Keywords

mobile mapping --- media

Dynamic Spectrum Management

Author:
Book Series: Signals and Communication Technology ISBN: 9789811507762 Year: Pages: 166 DOI: 10.1007/978-981-15-0776-2 Language: English
Publisher: Springer Nature
Subject: Agriculture (General) --- Computer Science
Added to DOAB on : 2020-02-04 11:21:15
License:

Loading...
Export citation

Choose an application

Abstract

This open access book, authored by a world-leading researcher in this field, describes fundamentals of dynamic spectrum management, provides a systematic overview on the enabling technologies covering cognitive radio, blockchain, and artificial intelligence, and offers valuable guidance for designing advanced wireless communications systems. This book is intended for a broad range of readers, including students and professionals in this field, as well as radio spectrum policy makers.

Bildung, Schule, Digitalisierung

Authors: --- --- --- --- et al.
ISBN: 9783830942467 Year: Pages: 478 DOI: 10.31244/9783830992462 Language: german
Publisher: Waxmann Verlag
Subject: Education
Added to DOAB on : 2020-11-09 10:30:35
License:

Loading...
Export citation

Choose an application

Abstract

Dieser Sammelband bündelt über 70 Beiträge zum Themenbereich „Bildung, Schule, Digitalisierung“. Ein zentrales Ziel ist es, den aktuellen Forschungsstand zu den vielfältigen Aspekten, Perspektiven und Fragen zur Digitalisierung im Kontext schulischer Bildung und Lehrer*innenbildung abzubilden und kritisch zu reflektieren. Thematisiert werden programmatische Vorstellungen zu Digitalisierung und Digitalität, Medienkonzepte und Einsatzszenarien digitaler Medien sowie Fragen ihrer Wirksamkeit. Versammelt sind empirische Originalarbeiten zum Einsatz digitaler Medien, Beispiele guter Praxis, Beschreibungen geplanter Studien sowie theoretische Beiträge zum Themenbereich.

Advanced Mobile Robotics: Volume 1

Author:
ISBN: 9783039219162 9783039219179 Year: Pages: 468 DOI: 10.3390/books978-3-03921-917-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

Keywords

path planning --- lane change --- excellent driver model --- neural networks --- autonomous vehicle --- remotely operated vehicle --- ocean current --- cable disturbance modeling --- lumped parameter method --- sliding mode observer --- 4WS4WD vehicle --- force control --- MPC --- PSO --- path tracking --- negative-buoyancy --- tri-tilt-rotor --- autonomous underwater vehicle (AUV) --- immersion and invariance --- object mapping --- Geometric Algebra --- Differential Evolution --- non-inertial reference frame --- centrifugal force --- turning model LIP --- trajectory planning --- space robot --- hybrid bionic robot --- chameleon --- end effector --- hybrid robot --- curve fitting --- fair optimisation --- trajectory interpolation --- piezoelectric actuator --- high step-up ratio --- high efficiency --- small size --- micro mobile robot --- biomimetic robot --- micro air vehicle --- flapping --- drag-based system --- dragonfly --- snake-like robot --- singularity analysis --- system design --- dynamical model --- nonlinear differentiator --- robotic drilling --- sliding mode control --- drilling end-effector --- fault diagnosis --- quadcopter UAV --- fault-tolerant control --- sliding mode observer --- Thau observer --- smart materials --- actuators --- robots --- electro-rheological fluids --- magneto-rheological fluids --- shape memory alloys --- medical devices --- rehabilitation system --- LOS --- motion camouflage control --- parallel navigation --- missile control system --- target tracking --- variable speed --- high-speed target --- snake robots --- head-raising --- shape-fitting --- phase-shifting --- spiral curve --- servo valve --- pneumatics --- position control --- cart --- robot --- step climbing --- transportation --- stopper --- climbing robot --- safety recovery mechanism --- cable detection --- dynamic coupling analysis --- path planning --- mobile robots --- curvature constraints --- state constraints --- extend procedure --- G3-continuity --- car-like kinematics --- obstacle avoidance system --- harmonic potential field --- curvature constraint --- non-holonomic mobile robot --- computing time --- inverse kinematics --- joint limit avoidance --- kinematic singularity --- manipulator --- obstacle avoidance --- potential field --- service robot --- graph representation --- similarity measure --- mobile robot --- static environments --- path planning --- multi-objective optimization --- NSGA-II --- evolutionary operators --- mobile robot --- coalmine --- exploration --- robotics --- ATEX --- safety --- methane --- quadruped robot --- stability criterion --- dynamic gait --- glass façade cleaning robot --- wall climbing robot --- biped mechanism --- data association --- 3D-SLAM --- localization --- mapping --- disturbance-rejection control --- extended state observer (ESO) --- hover mode --- transition mode --- negative buoyancy --- quad-tilt rotor --- autonomous underwater vehicle (AUV) --- Rodrigues parameters --- UAV --- variable spray --- prescription map translation --- PID algorithm --- grip planning --- biped climbing robots --- collision avoidance --- grip optimization --- dynamic environment --- closed-loop detection --- sparse pose adjustment (SPA) --- inertial measurement unit (IMU) --- simultaneous localization and mapping (SLAM) --- non-singular fast-terminal sliding-mode control --- industrial robotic manipulator --- external disturbance --- dynamic uncertainty --- adaptive control law --- exoskeleton --- load carriage --- muscle activities --- human–robot interaction --- discomfort --- actuatorless --- alpine ski --- human–robot interaction --- mechanism --- passive skiing turn --- skiing robot --- predictable trajectory planning --- geodesic --- constrained motion --- mobile robot --- jumping robot --- hopping robot --- continuous hopping --- single actuator --- self-reconfigurable robot --- cleaning robot --- Tetris-inspired --- polyomino tiling theory --- coverage path planning --- area decomposition --- multi-criteria decision making --- design and modeling --- kinematics --- kinematic identification --- monocular vision --- action generation --- robot motion --- undiscovered sensor values --- differential wheeled robot --- powered exoskeleton --- motion sensor --- machine learning --- unmanned aerial vehicle --- pesticide application --- deposition uniformity --- droplets penetrability --- control efficacy --- working efficiency --- subgoal graphs --- reinforcement learning --- hierarchical path planning --- uncertain environments --- mobile robots --- deep reinforcement learning --- mobile manipulation --- robot learning --- intelligent mobile robot --- pallet transportation --- master-slave --- compact driving unit --- high-gain observer --- snake robot --- series elastic actuator --- SEA --- Robot Operating System --- ROS --- non-prehensile manipulation --- manipulation planning --- contact planning --- manipulation action sequences --- robot --- obstacle avoidance --- facial and gender recognition --- q-learning --- Q-networks --- reinforcement learning --- gait cycle --- biped robots --- minimally invasive surgery robot --- inverse kinematics --- dialytic elimination --- Newton iteration --- curvilinear obstacle --- douglas–peuker polygonal approximation --- opposite angle-based exact cell decomposition --- path planning --- mobile robot --- UAV --- auto-tuning --- machine learning --- iterative learning --- extremum-seeking --- altitude controller --- enemy avoidance --- reinforcement learning --- decision making --- hardware-in-the-loop simulation --- unmanned aerial vehicles --- path planning --- multiple mobile robots --- artificial fish swarm algorithm --- expansion logic strategy --- sample gathering problem --- mobile robots --- mathematical modeling --- numerical evaluation --- centralized architecture --- optimization --- fault recovery --- reinforcement learning --- gait adaptation --- legged robot --- bio-inspired robot --- human–machine interactive navigation --- mobile robot --- topological map --- regional growth --- trajectory planning --- position/force cooperative control --- hierarchical planning --- object-oriented --- symmetrical adaptive variable impedance --- biologically-inspired --- self-learning --- formation control --- mobile robots --- loop closure detection --- convolutional neural network --- spatial pyramid pooling --- dynamic neural networks --- mobile robot navigation --- gesture recognition --- behaviour dynamics --- real-time action recognition --- formation of robots --- non-holonomic robot --- stability analysis --- Lyapunov-like function --- target assignment --- goal exchange --- path following --- switching control --- swarm-robotics --- rendezvous consensus --- robot navigation --- victim-detection --- unmanned surface vessel --- path following --- integral line-of-sight --- finite-time currents observer --- radial basis function neural networks --- input saturation --- n/a

Advanced Mobile Robotics: Volume 2

Author:
ISBN: 9783039219445 9783039219452 Year: Pages: 498 DOI: 10.3390/books978-3-03921-945-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

Keywords

path planning --- lane change --- excellent driver model --- neural networks --- autonomous vehicle --- remotely operated vehicle --- ocean current --- cable disturbance modeling --- lumped parameter method --- sliding mode observer --- 4WS4WD vehicle --- force control --- MPC --- PSO --- path tracking --- negative-buoyancy --- tri-tilt-rotor --- autonomous underwater vehicle (AUV) --- immersion and invariance --- object mapping --- Geometric Algebra --- Differential Evolution --- non-inertial reference frame --- centrifugal force --- turning model LIP --- trajectory planning --- space robot --- hybrid bionic robot --- chameleon --- end effector --- hybrid robot --- curve fitting --- fair optimisation --- trajectory interpolation --- piezoelectric actuator --- high step-up ratio --- high efficiency --- small size --- micro mobile robot --- biomimetic robot --- micro air vehicle --- flapping --- drag-based system --- dragonfly --- snake-like robot --- singularity analysis --- system design --- dynamical model --- nonlinear differentiator --- robotic drilling --- sliding mode control --- drilling end-effector --- fault diagnosis --- quadcopter UAV --- fault-tolerant control --- sliding mode observer --- Thau observer --- smart materials --- actuators --- robots --- electro-rheological fluids --- magneto-rheological fluids --- shape memory alloys --- medical devices --- rehabilitation system --- LOS --- motion camouflage control --- parallel navigation --- missile control system --- target tracking --- variable speed --- high-speed target --- snake robots --- head-raising --- shape-fitting --- phase-shifting --- spiral curve --- servo valve --- pneumatics --- position control --- cart --- robot --- step climbing --- transportation --- stopper --- climbing robot --- safety recovery mechanism --- cable detection --- dynamic coupling analysis --- path planning --- mobile robots --- curvature constraints --- state constraints --- extend procedure --- G3-continuity --- car-like kinematics --- obstacle avoidance system --- harmonic potential field --- curvature constraint --- non-holonomic mobile robot --- computing time --- inverse kinematics --- joint limit avoidance --- kinematic singularity --- manipulator --- obstacle avoidance --- potential field --- service robot --- graph representation --- similarity measure --- mobile robot --- static environments --- path planning --- multi-objective optimization --- NSGA-II --- evolutionary operators --- mobile robot --- coalmine --- exploration --- robotics --- ATEX --- safety --- methane --- quadruped robot --- stability criterion --- dynamic gait --- glass façade cleaning robot --- wall climbing robot --- biped mechanism --- data association --- 3D-SLAM --- localization --- mapping --- disturbance-rejection control --- extended state observer (ESO) --- hover mode --- transition mode --- negative buoyancy --- quad-tilt rotor --- autonomous underwater vehicle (AUV) --- Rodrigues parameters --- UAV --- variable spray --- prescription map translation --- PID algorithm --- grip planning --- biped climbing robots --- collision avoidance --- grip optimization --- dynamic environment --- closed-loop detection --- sparse pose adjustment (SPA) --- inertial measurement unit (IMU) --- simultaneous localization and mapping (SLAM) --- non-singular fast-terminal sliding-mode control --- industrial robotic manipulator --- external disturbance --- dynamic uncertainty --- adaptive control law --- exoskeleton --- load carriage --- muscle activities --- human–robot interaction --- discomfort --- actuatorless --- alpine ski --- human–robot interaction --- mechanism --- passive skiing turn --- skiing robot --- predictable trajectory planning --- geodesic --- constrained motion --- mobile robot --- jumping robot --- hopping robot --- continuous hopping --- single actuator --- self-reconfigurable robot --- cleaning robot --- Tetris-inspired --- polyomino tiling theory --- coverage path planning --- area decomposition --- multi-criteria decision making --- design and modeling --- kinematics --- kinematic identification --- monocular vision --- action generation --- robot motion --- undiscovered sensor values --- differential wheeled robot --- powered exoskeleton --- motion sensor --- machine learning --- unmanned aerial vehicle --- pesticide application --- deposition uniformity --- droplets penetrability --- control efficacy --- working efficiency --- subgoal graphs --- reinforcement learning --- hierarchical path planning --- uncertain environments --- mobile robots --- deep reinforcement learning --- mobile manipulation --- robot learning --- intelligent mobile robot --- pallet transportation --- master-slave --- compact driving unit --- high-gain observer --- snake robot --- series elastic actuator --- SEA --- Robot Operating System --- ROS --- non-prehensile manipulation --- manipulation planning --- contact planning --- manipulation action sequences --- robot --- obstacle avoidance --- facial and gender recognition --- q-learning --- Q-networks --- reinforcement learning --- gait cycle --- biped robots --- minimally invasive surgery robot --- inverse kinematics --- dialytic elimination --- Newton iteration --- curvilinear obstacle --- douglas–peuker polygonal approximation --- opposite angle-based exact cell decomposition --- path planning --- mobile robot --- UAV --- auto-tuning --- machine learning --- iterative learning --- extremum-seeking --- altitude controller --- enemy avoidance --- reinforcement learning --- decision making --- hardware-in-the-loop simulation --- unmanned aerial vehicles --- path planning --- multiple mobile robots --- artificial fish swarm algorithm --- expansion logic strategy --- sample gathering problem --- mobile robots --- mathematical modeling --- numerical evaluation --- centralized architecture --- optimization --- fault recovery --- reinforcement learning --- gait adaptation --- legged robot --- bio-inspired robot --- human–machine interactive navigation --- mobile robot --- topological map --- regional growth --- trajectory planning --- position/force cooperative control --- hierarchical planning --- object-oriented --- symmetrical adaptive variable impedance --- biologically-inspired --- self-learning --- formation control --- mobile robots --- loop closure detection --- convolutional neural network --- spatial pyramid pooling --- dynamic neural networks --- mobile robot navigation --- gesture recognition --- behaviour dynamics --- real-time action recognition --- formation of robots --- non-holonomic robot --- stability analysis --- Lyapunov-like function --- target assignment --- goal exchange --- path following --- switching control --- swarm-robotics --- rendezvous consensus --- robot navigation --- victim-detection --- unmanned surface vessel --- path following --- integral line-of-sight --- finite-time currents observer --- radial basis function neural networks --- input saturation --- n/a

Advanced Mobile Robotics: Volume 3

Author:
ISBN: 9783039219469 9783039219476 Year: Pages: 270 DOI: 10.3390/books978-3-03921-947-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

Keywords

path planning --- lane change --- excellent driver model --- neural networks --- autonomous vehicle --- remotely operated vehicle --- ocean current --- cable disturbance modeling --- lumped parameter method --- sliding mode observer --- 4WS4WD vehicle --- force control --- MPC --- PSO --- path tracking --- negative-buoyancy --- tri-tilt-rotor --- autonomous underwater vehicle (AUV) --- immersion and invariance --- object mapping --- Geometric Algebra --- Differential Evolution --- non-inertial reference frame --- centrifugal force --- turning model LIP --- trajectory planning --- space robot --- hybrid bionic robot --- chameleon --- end effector --- hybrid robot --- curve fitting --- fair optimisation --- trajectory interpolation --- piezoelectric actuator --- high step-up ratio --- high efficiency --- small size --- micro mobile robot --- biomimetic robot --- micro air vehicle --- flapping --- drag-based system --- dragonfly --- snake-like robot --- singularity analysis --- system design --- dynamical model --- nonlinear differentiator --- robotic drilling --- sliding mode control --- drilling end-effector --- fault diagnosis --- quadcopter UAV --- fault-tolerant control --- sliding mode observer --- Thau observer --- smart materials --- actuators --- robots --- electro-rheological fluids --- magneto-rheological fluids --- shape memory alloys --- medical devices --- rehabilitation system --- LOS --- motion camouflage control --- parallel navigation --- missile control system --- target tracking --- variable speed --- high-speed target --- snake robots --- head-raising --- shape-fitting --- phase-shifting --- spiral curve --- servo valve --- pneumatics --- position control --- cart --- robot --- step climbing --- transportation --- stopper --- climbing robot --- safety recovery mechanism --- cable detection --- dynamic coupling analysis --- path planning --- mobile robots --- curvature constraints --- state constraints --- extend procedure --- G3-continuity --- car-like kinematics --- obstacle avoidance system --- harmonic potential field --- curvature constraint --- non-holonomic mobile robot --- computing time --- inverse kinematics --- joint limit avoidance --- kinematic singularity --- manipulator --- obstacle avoidance --- potential field --- service robot --- graph representation --- similarity measure --- mobile robot --- static environments --- path planning --- multi-objective optimization --- NSGA-II --- evolutionary operators --- mobile robot --- coalmine --- exploration --- robotics --- ATEX --- safety --- methane --- quadruped robot --- stability criterion --- dynamic gait --- glass façade cleaning robot --- wall climbing robot --- biped mechanism --- data association --- 3D-SLAM --- localization --- mapping --- disturbance-rejection control --- extended state observer (ESO) --- hover mode --- transition mode --- negative buoyancy --- quad-tilt rotor --- autonomous underwater vehicle (AUV) --- Rodrigues parameters --- UAV --- variable spray --- prescription map translation --- PID algorithm --- grip planning --- biped climbing robots --- collision avoidance --- grip optimization --- dynamic environment --- closed-loop detection --- sparse pose adjustment (SPA) --- inertial measurement unit (IMU) --- simultaneous localization and mapping (SLAM) --- non-singular fast-terminal sliding-mode control --- industrial robotic manipulator --- external disturbance --- dynamic uncertainty --- adaptive control law --- exoskeleton --- load carriage --- muscle activities --- human–robot interaction --- discomfort --- actuatorless --- alpine ski --- human–robot interaction --- mechanism --- passive skiing turn --- skiing robot --- predictable trajectory planning --- geodesic --- constrained motion --- mobile robot --- jumping robot --- hopping robot --- continuous hopping --- single actuator --- self-reconfigurable robot --- cleaning robot --- Tetris-inspired --- polyomino tiling theory --- coverage path planning --- area decomposition --- multi-criteria decision making --- design and modeling --- kinematics --- kinematic identification --- monocular vision --- action generation --- robot motion --- undiscovered sensor values --- differential wheeled robot --- powered exoskeleton --- motion sensor --- machine learning --- unmanned aerial vehicle --- pesticide application --- deposition uniformity --- droplets penetrability --- control efficacy --- working efficiency --- subgoal graphs --- reinforcement learning --- hierarchical path planning --- uncertain environments --- mobile robots --- deep reinforcement learning --- mobile manipulation --- robot learning --- intelligent mobile robot --- pallet transportation --- master-slave --- compact driving unit --- high-gain observer --- snake robot --- series elastic actuator --- SEA --- Robot Operating System --- ROS --- non-prehensile manipulation --- manipulation planning --- contact planning --- manipulation action sequences --- robot --- obstacle avoidance --- facial and gender recognition --- q-learning --- Q-networks --- reinforcement learning --- gait cycle --- biped robots --- minimally invasive surgery robot --- inverse kinematics --- dialytic elimination --- Newton iteration --- curvilinear obstacle --- douglas–peuker polygonal approximation --- opposite angle-based exact cell decomposition --- path planning --- mobile robot --- UAV --- auto-tuning --- machine learning --- iterative learning --- extremum-seeking --- altitude controller --- enemy avoidance --- reinforcement learning --- decision making --- hardware-in-the-loop simulation --- unmanned aerial vehicles --- path planning --- multiple mobile robots --- artificial fish swarm algorithm --- expansion logic strategy --- sample gathering problem --- mobile robots --- mathematical modeling --- numerical evaluation --- centralized architecture --- optimization --- fault recovery --- reinforcement learning --- gait adaptation --- legged robot --- bio-inspired robot --- human–machine interactive navigation --- mobile robot --- topological map --- regional growth --- trajectory planning --- position/force cooperative control --- hierarchical planning --- object-oriented --- symmetrical adaptive variable impedance --- biologically-inspired --- self-learning --- formation control --- mobile robots --- loop closure detection --- convolutional neural network --- spatial pyramid pooling --- dynamic neural networks --- mobile robot navigation --- gesture recognition --- behaviour dynamics --- real-time action recognition --- formation of robots --- non-holonomic robot --- stability analysis --- Lyapunov-like function --- target assignment --- goal exchange --- path following --- switching control --- swarm-robotics --- rendezvous consensus --- robot navigation --- victim-detection --- unmanned surface vessel --- path following --- integral line-of-sight --- finite-time currents observer --- radial basis function neural networks --- input saturation --- n/a

Assessing the Performance of Passive Houses in Mediterranean Climate Regions

Author:
ISBN: 9783039289493 / 9783039289509 Year: Pages: 138 DOI: 10.3390/books978-3-03928-950-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This book results from a Special Issue related to the latest progress in the thermodynamics of machines systems and processes since the premonitory work of Carnot. Carnot invented his famous cycle and generalized the efficiency concept for thermo-mechanical engines. Since that time, research progressed from the equilibrium approach to the irreversible situation that represents the general case. This book illustrates the present state-of-the-art advances after one or two centuries of consideration regarding applications and fundamental aspects. The research is moving fast in the direction of economic and environmental aspects. This will probably continue during the coming years. This book mainly highlights the recent focus on the maximum power of engines, as well as the corresponding first law efficiency upper bounds.

Cooperative Connected and Automated Mobility (CCAM): Technologies and Applications

Author:
ISBN: 9783039281589 9783039281596 Year: Pages: 128 DOI: 10.3390/books978-3-03928-159-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Cooperative connected and automated mobility (CCAM) has the potential to reshape the transportation ecosystem in a revolutionary way. Transportation systems will be safer, more efficient and more comfortable. Cars are going to be the third living space, as passengers will have the freedom to use their car to live, work and travel. Despite the massive effort devoted, both by academia and industry, to developing connected and automated vehicles, there are still many issues to be addressed, including not only scientific and technological, but also regulatory and political issues. This book, mostly centered on the scientific and technological aspects of CCAMs, features seven articles highlighting recent advances of the state of the art in different CCAM technologies. Two papers address vehicular platooning, a key application for day-1 automated driving, other presents a scheme to improve the resource utilization of vehicular networks, while another paper addresses critical train communications, proposing an architecture based on 5G, SDN and MPTCP to provide path diversity and end-to-end redundancy. One paper describes the status of roadside deployment activities and analyzes the policies and practices of cooperative driving in the European Union. Finally, two review papers, one on congestion control techniques for VANETs and the other on fault tolerance techniques for vehicular networks, conclude the book.

Haptics: Science, Technology, Applications

Authors: --- --- ---
Book Series: Lecture Notes in Computer Science; Information Systems and Applications, incl. Internet/Web, and HCI ISBN: 9783030581473 Year: Pages: 557 DOI: 10.1007/978-3-030-58147-3 Language: English
Publisher: Springer Nature
Subject: Computer Science
Added to DOAB on : 2020-09-23 00:04:15
License:

Loading...
Export citation

Choose an application

Abstract

This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility.

Green, Energy-Efficient and Sustainable Networks

Authors: --- --- ---
ISBN: 9783039280384 9783039280391 Year: Pages: 382 DOI: 10.3390/books978-3-03928-039-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

The book Green, Energy-Efficient and Sustainable Networks provides insights and solutions for a range of problems in the field of obtaining greener, energy-efficient, and sustainable networks. The book contains the outcomes of the Special Issue on “Green, Energy-Efficient and Sustainable Networks” of the Sensors journal. Seventeen high-quality papers published in the Special Issue have been collected and reproduced in this book, demonstrating significant achievements in the field. Among the published papers, one paper is an editorial and one is a review, while the remaining 15 works are research articles. The published papers are self-contained peer-reviewed scientific works that are authored by more than 75 different contributors with both academic and industry backgrounds. The editorial paper gives an introduction to the problem of information and communication technology (ICT) energy consumption and greenhouse gas emissions, presenting the state of the art and future trends in terms of improving the energy-efficiency of wireless networks and data centers, as the major energy consumers in the ICT sector. In addition, the published articles aim to improve energy efficiency in the fields of software-defined networking, Internet of things, machine learning, authentication, energy harvesting, wireless relay systems, routing metrics, wireless sensor networks, device-to-device communications, heterogeneous wireless networks, and image sensing. The last paper is a review that gives a detailed overview of energy-efficiency improvements and methods for the implementation of fifth-generation networks and beyond. This book can serve as a source of information in industrial, teaching, and/or research and development activities. The book is a valuable source of information, since it presents recent advances in different fields related to greening and improving the energy-efficiency and sustainability of those ICTs particularly addressed in this book

Keywords

internet-of-things --- opportunistic networks --- wireless power transfer --- inter-meeting time --- Markov chain --- node speed --- battery capacity --- node density --- energy-efficient Ethernet --- QoS --- SDN --- real-time traffic --- ONOS --- image compressive sensing (CS) --- green internet of things (IoT) --- measurement structure --- random structural matrices --- linear recovery --- Internet of Things --- malware detection --- adversarial samples --- machine learning --- edge computing --- clustering --- physical-layer authentication --- lightweight cipher --- channel state information --- lightweight authentication --- HetNets --- interference coordination --- energy efficiency --- stochastic geometry --- Device-to-Device (D2D) --- peer discovery --- energy harvesting --- social awareness --- PHY-layer --- light-weight authentication --- neural network --- WSN --- industrial --- wireless power transfer --- directional charging vehicle --- charging efficiency --- RWSN --- green networking --- energy aware routing --- carbon footprint --- adaptive link rate --- control and data plane --- 5G --- energy-efficiency --- sustainability --- NOMA --- energy harvesting --- amplify-and-forward --- imperfect CSI --- successive interference cancellation (SIC) --- machine learning --- LTE-A --- energy efficiency --- resource block allocation --- bisection based optimal power allocation --- water filling algorithm --- proportional rate constraint --- mobile edge computing --- IoT --- RF Fingerprinting --- authentication --- cooperative smart community --- scheduling algorithm --- consumer preferences --- renewables --- software defined networking (SDN) --- data center --- optimization --- traffic engineering --- energy awareness --- energy-efficiency --- wireless --- green --- sustainable --- data centre --- networks --- ICT --- 5G --- power --- wired access --- IoT --- spatial modulation --- multiple-input multiple-output --- full-duplex --- self-interference cancellation --- symbol error probability

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Narrow your search