Search results: Found 10

Listing 1 - 10 of 10
Sort by
Selected Papers from the 9th World Congress on Industrial Process Tomography

Authors: --- ---
ISBN: 9783039282487 9783039282494 Year: Pages: 262 DOI: 10.3390/books978-3-03928-249-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Industrial process tomography (IPT) is becoming an important tool for Industry 4.0. It consists of multidimensional sensor technologies and methods that aim to provide unparalleled internal information on industrial processes used in many sectors. This book showcases a selection of papers at the forefront of the latest developments in such technologies.

Keywords

wire-mesh --- flow distribution --- subsea gas–liquid separation --- two-phase flow --- cyclonic chamber --- machine learning --- inverse problem --- electrical impedance tomography --- image reconstruction --- industrial tomography --- electrical impedance tomography --- ultrasound tomography --- dual-modality imaging --- lagrange-newton method --- electrical capacitance tomography --- industrial process tomography --- direct image reconstruction --- Calderon’s method --- truncation radius --- open electrical impedance tomography --- sensor design --- conformal transformation --- focusing sensor --- open domain imaging --- simulated inductor technique --- process tomography --- contactless electrical tomography --- grouting duct --- capacitive sensor --- cross section distribution detecting --- measurement --- drying process --- Electrical Impedance Tomography --- impedance spectroscopy --- chokeberry --- EIDORS --- Magnetic Induction Tomography --- imaging defects --- imaging deformations --- total variation algorithms --- threshold-differencing algorithms --- continuous casting --- imaging techniques --- multiphase flow --- nanoparticles --- enhanced oil recovery --- tomography --- sand-pack flooding --- electrical resistance tomography --- smart water meter --- wastewater management --- measurement data analysis --- targeted crowdsourcing --- flow investigation tool --- X-ray process tomography --- radiography imaging --- 3D --- ECT --- 3D-printing --- sensors --- modeling --- FPGA --- high-speed EIT --- frequency division multiplexing --- ONE-SHOT --- EIDORS --- n/a

Solar Energy Applications in Houses, Smart Cities and Microgrids

Author:
ISBN: 9783039280681 9783039280698 Year: Pages: 96 DOI: 10.3390/books978-3-03928-069-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

Five papers were selected for this Special Issue, with three relating to solar energy applications in houses, smart cities, and microgrids; one studying the relationship between the smart city model and the concept of energy sustainability; and one addressing the following two topics: the lack of effectiveness of detection algorithms based on the voltage/frequency displacement concept under voltage-controlled inverters and the applicability limits of others based on the impedance measurement (IM).

Batteries and Supercapacitors Aging

Authors: ---
ISBN: 9783039287147 / 9783039287154 Year: Pages: 214 DOI: 10.3390/books978-3-03928-715-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Electrochemical energy storage is a key element of systems in a wide range of sectors, such as electro-mobility, portable devices, and renewable energy. The energy storage systems (ESSs) considered here are batteries, supercapacitors, and hybrid components such as lithium-ion capacitors. The durability of ESSs determines the total cost of ownership, the global impacts (lifecycle) on a large portion of these applications and, thus, their viability. Understanding ESS aging is a key to optimizing their design and usability in terms of their intended applications. Knowledge of ESS aging is also essential to improve their dependability (reliability, availability, maintainability, and safety). This Special Issue includes 12 research papers and 1 review article focusing on battery, supercapacitor, and hybrid capacitor aging.

Keywords

battery --- operative dependability --- selection algorithm --- capacitance --- state-of-charge monitoring --- self-discharge --- supercapacitor --- aging --- lithium-ion capacitor --- aging model --- langmuir isotherm --- lifetime prediction --- aging mechanisms --- calendar aging --- floating aging --- autonomous devices --- lead-acid batteries --- Petri nets --- second life battery --- lithium-ion --- electrical characterization --- state-of-health (SOH) --- partial coulometric counter --- lithium-ion --- NMC --- aging --- ampere-hour throughput --- incremental capacity analysis --- accelerated ageing --- battery management system --- battery management system (BMS) --- calendar ageing --- cycling ageing --- electric vehicle --- embedded algorithm --- incremental capacity analysis --- incremental capacity analysis (ICA) --- lithium-ion battery --- lithium iron phosphate --- LFP --- LiFePO4 --- remaining capacity --- state of health (SoH) --- incremental capacity analysis --- lithium-ion --- electric vehicles --- driving cycles --- cell degradation --- lithium-ion --- batteries --- ageing --- post-mortem analysis --- lithium-ion battery --- lamination --- electrochemical impedance spectroscopy --- fast-charging capability --- lifetime --- abuse test --- lithium-ion capacitor --- safety --- temperature --- thermal runaway --- battery life testing --- capacitance --- state-of-charge determination --- state-of-health --- aging --- impedance spectroscopy --- pseudo-charge --- Li-Ion battery --- Ni-rich cathode --- degradation --- cathode-electrolyte interphase --- electro mobility --- n/a

Numerical Analysis or Numerical Method in Symmetry

Author:
ISBN: 9783039283729 9783039283736 Year: Pages: 194 DOI: 10.3390/books978-3-03928-373-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue focuses mainly on techniques and the relative formalism typical of numerical methods and therefore of numerical analysis, more generally. These fields of study of mathematics represent an important field of investigation both in the field of applied mathematics and even more exquisitely in the pure research of the theory of approximation and the study of polynomial relations as well as in the analysis of the solutions of the differential equations both ordinary and partial derivatives. Therefore, a substantial part of research on the topic of numerical analysis cannot exclude the fundamental role played by approximation theory and some of the tools used to develop this research. In this Special Issue, we want to draw attention to the mathematical methods used in numerical analysis, such as special functions, orthogonal polynomials, and their theoretical tools, such as Lie algebra, to study the concepts and properties of some special and advanced methods, which are useful in the description of solutions of linear and nonlinear differential equations. A further field of investigation is dedicated to the theory and related properties of fractional calculus with its adequate application to numerical methods.

Keywords

risk assessment --- numerical analysis --- ignition hazard --- effective field strength --- offshore plant --- Hamiltonian system --- complex Lagrangian --- Noether symmetries --- first integrals --- symplectic Runge–Kutta methods --- effective order --- partitioned runge-kutta methods --- symplecticity --- hamiltonian systems --- Runge-Kutta type methods --- fourth-order ODEs --- order conditions --- B-series --- quad-colored trees --- k-hypergeometric differential equations --- non-homogeneous --- k-hypergeometric series --- special function --- general solution --- Frobenius method --- Chebyshev polynomials --- pseudo-Chebyshev polynomials --- recurrence relations --- differential equations --- composition properties --- orthogonality properties --- numerical analysis --- heat generation --- chemical reaction --- thin needle --- nanofluid --- fourth-order --- nonoscillatory solutions --- oscillatory solutions --- delay differential equations --- particle accelerator --- coupling impedance --- dual integral equations --- Clenshaw-Curtis quadrature --- steepest descent method --- logarithmic singularities --- Cauchy singularity --- highly oscillatory integrals --- second-order --- nonoscillatory solutions --- oscillatory solutions --- delay differential equations --- Fredholm integral equations --- multiresolution analysis --- unitary extension principle --- oblique extension principle --- B-splines --- wavelets --- tight framelets --- Swift–Hohenberg type of equation --- surfaces --- narrow band domain --- closest point method --- operator splitting method

MaxEnt 2019—Proceedings, 2019, MaxEnt 2019The 39th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering

Authors: ---
ISBN: 9783039284764 9783039284771 Year: Pages: 312 DOI: 10.3390/books978-3-03928-477-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This Proceedings book presents papers from the 39th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, MaxEnt 2019. The workshop took place at the Max Planck Institute for Plasma Physics in Garching near Munich, Germany, from 30 June to 5 July 2019, and invited contributions on all aspects of probabilistic inference, including novel techniques, applications, and work that sheds new light on the foundations of inference. Addressed are inverse and uncertainty quantification (UQ) and problems arising from a large variety of applications, such as earth science, astrophysics, material and plasma science, imaging in geophysics and medicine, nondestructive testing, density estimation, remote sensing, Gaussian process (GP) regression, optimal experimental design, data assimilation, and data mining.

Signal Processing and Analysis of Electrical Circuit

Authors: --- ---
ISBN: 9783039282944 9783039282951 Year: Pages: 604 DOI: 10.3390/books978-3-03928-295-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue with 35 published articles shows the significance of the topic “Signal Processing and Analysis of Electrical Circuit”. This topic has been gaining increasing attention in recent times. The presented articles can be categorized into four different areas: signal processing and analysis methods of electrical circuits; electrical measurement technology; applications of signal processing of electrical equipment; fault diagnosis of electrical circuits. It is a fact that the development of electrical systems, signal processing methods, and circuits has been accelerating. Electronics applications related to electrical circuits and signal processing methods have gained noticeable attention in recent times. The methods of signal processing and electrical circuits are widely used by engineers and scientists all over the world. The constituent papers represent a significant contribution to electronics and present applications that can be used in industry. Further improvements to the presented approaches are required for realizing their full potential.

Keywords

VMD --- signal analysis --- ICEEMD --- IMF --- random noise --- attenuation --- commutator motor --- fault diagnosis --- method --- technique --- signal processing --- acoustic --- Inner and outer product --- tensor --- FPGA --- hardware --- direct digital synthesizer (DDS) --- frequency tuning word (FTW) --- stability --- accuracy --- demodulation --- phase-locked loop --- Chebyshev filter --- measurement noise suppression --- class AB operation --- CMOS --- current mirror --- current buffer --- quasi floating gate --- low power --- CMOS --- dynamic comparator --- offset calibration --- high speed --- low noise --- low power --- ADC --- all-pass filter --- CMOS --- time delay --- broadband --- true-time-delay --- electrochemical impedance spectroscopy --- FRA --- multichannel acquisition --- impedance spectrometry --- microcontroller --- intelligent vehicles --- LiDAR odometry --- range sensing --- simultaneous localization and mapping (SLAM) --- tilt sensor --- sensor data fusion --- complementary filters --- overlap-add processing --- spectral analysis --- variational mode decomposition (VMD) --- duffing chaotic oscillator (DCO) --- permutation entropy (PE) --- feature extraction --- frequency characteristic --- underwater acoustic signal --- ship-radiated noise --- PM/PWM --- capacitance-to-time conversion --- differential capacitive sensor --- brick-wall filter --- fuzzy logic --- induction motor --- Shannon entropy --- short-circuit fault --- APF --- CNFET --- pole-frequency --- chirality --- phase angle --- tuning --- DC–DC converter --- switched capacitor --- power management integrated circuit --- CMOS technology --- frequency standard comparator --- dual Mixing Time difference --- phase difference --- correlation function --- chebyshev polynomial --- compressed sensing --- estimated sparsity --- least squares solution --- stochastic gradient --- reconstruction probability --- direct position determination --- array signal processing --- Doppler shifts --- matrix eigen-perturbation theory --- system errors --- Cramér–Rao bound --- differential power analysis (DPA), SIMON --- fault injection --- double rate --- power randomization --- intention of movement classification --- EMG-Signals --- Support Vector Machines --- asynchronous --- delay cell --- passive resistor --- SAR ADC --- loop delay circuit --- Resistance-to-Period converter --- robust read-out circuits --- ratiometric technique --- Fresnel lens --- wingbeat --- insects --- optoelectronics --- bees --- wasps --- fruit flies --- e-traps --- analog-to-digital converter --- successive approximation register --- direct sampling --- time-interleaved --- channel-selection-embedded bootstrap --- segmented pre-quantization and bypass --- LVDS --- high-speed serial interface --- transmitter --- receiver --- low-power --- image fusion --- multi-sensor fusion --- night vision --- hierarchical heterogeneous multi-DAG workflow --- multigroup scan --- ultrasonic phased array --- heterogeneous earliest finish time --- resolver --- discrete wavelet transform --- singular value decomposition --- automatic calibration --- noise reduction --- ripple voltage measurement --- DAC --- comparator --- peak-ripple estimation --- binary search --- low-cost --- secret image sharing --- digital image --- n-out-of-n scheme --- color palette --- colluder attack --- image restoration --- impulse noise --- ADMM --- HOCTVL1 --- spatially adapted regularization parameter --- rod electrode --- electrostatic induction --- method of images --- induced charge --- induced current --- 3D-IC design --- NILT --- TSV noise coupling --- RDL --- chain matrix --- interconnect line --- n/a

Novel Smart Textiles

Author:
ISBN: 9783039285709 / 9783039285716 Year: Pages: 230 DOI: 10.3390/books978-3-03928-571-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Arts in general
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The sensing, adapting, responding, multifunctionality, low energy, small size and weight, ease of forming, and low-cost attributes of smart textiles and their multidisciplinary scope offer numerous end uses in medical, sports and fitness, military, fashion, automotive, aerospace, the built environment, and energy industries. The research and development on these new and high-value materials cross scientific boundaries, redefine material science design and engineering, and enhance quality of life and our environment. “Novel Smart Textiles” is a focused Special Issue that reports the latest research of this field and facilitates dissemination, networking, discussion, and debate.

Keywords

e-textile --- metamaterials --- transmission line --- wearable --- split ring resonator --- dye-sensitized solar cell (DSSC) --- polyacrylonitrile (PAN) --- nanofiber mat --- electrospinning --- PEDOT:PSS --- dye-sensitized solar cell --- half-textile --- spectral analysis --- parameter identification --- equivalent circuit --- black-box --- grey-box --- power spectral density --- optimization --- analytical model --- electromagnetic shielding effectiveness --- electric properties --- fabric --- woven textiles --- carbon nanomaterials --- smart fabrics --- in-line monitoring --- polymeric composites --- carbon nanotubes --- reduced graphene oxide --- textile electrode --- ECG --- motion sensor --- skin-electrode impedance --- electrically conductive textiles --- polymers --- smart textiles --- surface area evaluation --- microencapsulation --- biofunctional --- drug-delivery --- textile-based stretch sensors --- stitch structure --- wearable stretch sensor --- conductive thread --- conductivity --- metal flake --- coating --- e-textile --- encapsulation --- durability --- stiffness --- textile/polymer composite --- stretchable electronics --- smart textiles --- mechanical and electrical properties --- quasi-static and cyclic mechanical loading --- life-time expectancy --- smart textile --- thermal textile pixel --- thermal communication --- non-auditory and nonvisual communication --- thermal conductivity --- Peltier element --- SMART pattern-changing fabric --- pattern effect --- visual response --- visual brain --- event-related potential (ERP) --- psychotextiles --- art and design --- smart textiles --- textile sensors --- e-textiles --- visual brain --- thermal textile pixels --- stretchable electronics --- conductive textiles --- wearables --- stitch-based sensors --- biofunctional textiles --- ECG --- hybrid electrodes --- motion tracking --- carbon nanotextiles --- composites --- EMS textiles --- electrospun solar cells --- embroidered e-textiles --- targeted delivery --- psychotextiles --- energy harvesting --- multifunctional

Advanced Mobile Robotics: Volume 1

Author:
ISBN: 9783039219162 9783039219179 Year: Pages: 468 DOI: 10.3390/books978-3-03921-917-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

Keywords

path planning --- lane change --- excellent driver model --- neural networks --- autonomous vehicle --- remotely operated vehicle --- ocean current --- cable disturbance modeling --- lumped parameter method --- sliding mode observer --- 4WS4WD vehicle --- force control --- MPC --- PSO --- path tracking --- negative-buoyancy --- tri-tilt-rotor --- autonomous underwater vehicle (AUV) --- immersion and invariance --- object mapping --- Geometric Algebra --- Differential Evolution --- non-inertial reference frame --- centrifugal force --- turning model LIP --- trajectory planning --- space robot --- hybrid bionic robot --- chameleon --- end effector --- hybrid robot --- curve fitting --- fair optimisation --- trajectory interpolation --- piezoelectric actuator --- high step-up ratio --- high efficiency --- small size --- micro mobile robot --- biomimetic robot --- micro air vehicle --- flapping --- drag-based system --- dragonfly --- snake-like robot --- singularity analysis --- system design --- dynamical model --- nonlinear differentiator --- robotic drilling --- sliding mode control --- drilling end-effector --- fault diagnosis --- quadcopter UAV --- fault-tolerant control --- sliding mode observer --- Thau observer --- smart materials --- actuators --- robots --- electro-rheological fluids --- magneto-rheological fluids --- shape memory alloys --- medical devices --- rehabilitation system --- LOS --- motion camouflage control --- parallel navigation --- missile control system --- target tracking --- variable speed --- high-speed target --- snake robots --- head-raising --- shape-fitting --- phase-shifting --- spiral curve --- servo valve --- pneumatics --- position control --- cart --- robot --- step climbing --- transportation --- stopper --- climbing robot --- safety recovery mechanism --- cable detection --- dynamic coupling analysis --- path planning --- mobile robots --- curvature constraints --- state constraints --- extend procedure --- G3-continuity --- car-like kinematics --- obstacle avoidance system --- harmonic potential field --- curvature constraint --- non-holonomic mobile robot --- computing time --- inverse kinematics --- joint limit avoidance --- kinematic singularity --- manipulator --- obstacle avoidance --- potential field --- service robot --- graph representation --- similarity measure --- mobile robot --- static environments --- path planning --- multi-objective optimization --- NSGA-II --- evolutionary operators --- mobile robot --- coalmine --- exploration --- robotics --- ATEX --- safety --- methane --- quadruped robot --- stability criterion --- dynamic gait --- glass façade cleaning robot --- wall climbing robot --- biped mechanism --- data association --- 3D-SLAM --- localization --- mapping --- disturbance-rejection control --- extended state observer (ESO) --- hover mode --- transition mode --- negative buoyancy --- quad-tilt rotor --- autonomous underwater vehicle (AUV) --- Rodrigues parameters --- UAV --- variable spray --- prescription map translation --- PID algorithm --- grip planning --- biped climbing robots --- collision avoidance --- grip optimization --- dynamic environment --- closed-loop detection --- sparse pose adjustment (SPA) --- inertial measurement unit (IMU) --- simultaneous localization and mapping (SLAM) --- non-singular fast-terminal sliding-mode control --- industrial robotic manipulator --- external disturbance --- dynamic uncertainty --- adaptive control law --- exoskeleton --- load carriage --- muscle activities --- human–robot interaction --- discomfort --- actuatorless --- alpine ski --- human–robot interaction --- mechanism --- passive skiing turn --- skiing robot --- predictable trajectory planning --- geodesic --- constrained motion --- mobile robot --- jumping robot --- hopping robot --- continuous hopping --- single actuator --- self-reconfigurable robot --- cleaning robot --- Tetris-inspired --- polyomino tiling theory --- coverage path planning --- area decomposition --- multi-criteria decision making --- design and modeling --- kinematics --- kinematic identification --- monocular vision --- action generation --- robot motion --- undiscovered sensor values --- differential wheeled robot --- powered exoskeleton --- motion sensor --- machine learning --- unmanned aerial vehicle --- pesticide application --- deposition uniformity --- droplets penetrability --- control efficacy --- working efficiency --- subgoal graphs --- reinforcement learning --- hierarchical path planning --- uncertain environments --- mobile robots --- deep reinforcement learning --- mobile manipulation --- robot learning --- intelligent mobile robot --- pallet transportation --- master-slave --- compact driving unit --- high-gain observer --- snake robot --- series elastic actuator --- SEA --- Robot Operating System --- ROS --- non-prehensile manipulation --- manipulation planning --- contact planning --- manipulation action sequences --- robot --- obstacle avoidance --- facial and gender recognition --- q-learning --- Q-networks --- reinforcement learning --- gait cycle --- biped robots --- minimally invasive surgery robot --- inverse kinematics --- dialytic elimination --- Newton iteration --- curvilinear obstacle --- douglas–peuker polygonal approximation --- opposite angle-based exact cell decomposition --- path planning --- mobile robot --- UAV --- auto-tuning --- machine learning --- iterative learning --- extremum-seeking --- altitude controller --- enemy avoidance --- reinforcement learning --- decision making --- hardware-in-the-loop simulation --- unmanned aerial vehicles --- path planning --- multiple mobile robots --- artificial fish swarm algorithm --- expansion logic strategy --- sample gathering problem --- mobile robots --- mathematical modeling --- numerical evaluation --- centralized architecture --- optimization --- fault recovery --- reinforcement learning --- gait adaptation --- legged robot --- bio-inspired robot --- human–machine interactive navigation --- mobile robot --- topological map --- regional growth --- trajectory planning --- position/force cooperative control --- hierarchical planning --- object-oriented --- symmetrical adaptive variable impedance --- biologically-inspired --- self-learning --- formation control --- mobile robots --- loop closure detection --- convolutional neural network --- spatial pyramid pooling --- dynamic neural networks --- mobile robot navigation --- gesture recognition --- behaviour dynamics --- real-time action recognition --- formation of robots --- non-holonomic robot --- stability analysis --- Lyapunov-like function --- target assignment --- goal exchange --- path following --- switching control --- swarm-robotics --- rendezvous consensus --- robot navigation --- victim-detection --- unmanned surface vessel --- path following --- integral line-of-sight --- finite-time currents observer --- radial basis function neural networks --- input saturation --- n/a

Advanced Mobile Robotics: Volume 2

Author:
ISBN: 9783039219445 9783039219452 Year: Pages: 498 DOI: 10.3390/books978-3-03921-945-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

Keywords

path planning --- lane change --- excellent driver model --- neural networks --- autonomous vehicle --- remotely operated vehicle --- ocean current --- cable disturbance modeling --- lumped parameter method --- sliding mode observer --- 4WS4WD vehicle --- force control --- MPC --- PSO --- path tracking --- negative-buoyancy --- tri-tilt-rotor --- autonomous underwater vehicle (AUV) --- immersion and invariance --- object mapping --- Geometric Algebra --- Differential Evolution --- non-inertial reference frame --- centrifugal force --- turning model LIP --- trajectory planning --- space robot --- hybrid bionic robot --- chameleon --- end effector --- hybrid robot --- curve fitting --- fair optimisation --- trajectory interpolation --- piezoelectric actuator --- high step-up ratio --- high efficiency --- small size --- micro mobile robot --- biomimetic robot --- micro air vehicle --- flapping --- drag-based system --- dragonfly --- snake-like robot --- singularity analysis --- system design --- dynamical model --- nonlinear differentiator --- robotic drilling --- sliding mode control --- drilling end-effector --- fault diagnosis --- quadcopter UAV --- fault-tolerant control --- sliding mode observer --- Thau observer --- smart materials --- actuators --- robots --- electro-rheological fluids --- magneto-rheological fluids --- shape memory alloys --- medical devices --- rehabilitation system --- LOS --- motion camouflage control --- parallel navigation --- missile control system --- target tracking --- variable speed --- high-speed target --- snake robots --- head-raising --- shape-fitting --- phase-shifting --- spiral curve --- servo valve --- pneumatics --- position control --- cart --- robot --- step climbing --- transportation --- stopper --- climbing robot --- safety recovery mechanism --- cable detection --- dynamic coupling analysis --- path planning --- mobile robots --- curvature constraints --- state constraints --- extend procedure --- G3-continuity --- car-like kinematics --- obstacle avoidance system --- harmonic potential field --- curvature constraint --- non-holonomic mobile robot --- computing time --- inverse kinematics --- joint limit avoidance --- kinematic singularity --- manipulator --- obstacle avoidance --- potential field --- service robot --- graph representation --- similarity measure --- mobile robot --- static environments --- path planning --- multi-objective optimization --- NSGA-II --- evolutionary operators --- mobile robot --- coalmine --- exploration --- robotics --- ATEX --- safety --- methane --- quadruped robot --- stability criterion --- dynamic gait --- glass façade cleaning robot --- wall climbing robot --- biped mechanism --- data association --- 3D-SLAM --- localization --- mapping --- disturbance-rejection control --- extended state observer (ESO) --- hover mode --- transition mode --- negative buoyancy --- quad-tilt rotor --- autonomous underwater vehicle (AUV) --- Rodrigues parameters --- UAV --- variable spray --- prescription map translation --- PID algorithm --- grip planning --- biped climbing robots --- collision avoidance --- grip optimization --- dynamic environment --- closed-loop detection --- sparse pose adjustment (SPA) --- inertial measurement unit (IMU) --- simultaneous localization and mapping (SLAM) --- non-singular fast-terminal sliding-mode control --- industrial robotic manipulator --- external disturbance --- dynamic uncertainty --- adaptive control law --- exoskeleton --- load carriage --- muscle activities --- human–robot interaction --- discomfort --- actuatorless --- alpine ski --- human–robot interaction --- mechanism --- passive skiing turn --- skiing robot --- predictable trajectory planning --- geodesic --- constrained motion --- mobile robot --- jumping robot --- hopping robot --- continuous hopping --- single actuator --- self-reconfigurable robot --- cleaning robot --- Tetris-inspired --- polyomino tiling theory --- coverage path planning --- area decomposition --- multi-criteria decision making --- design and modeling --- kinematics --- kinematic identification --- monocular vision --- action generation --- robot motion --- undiscovered sensor values --- differential wheeled robot --- powered exoskeleton --- motion sensor --- machine learning --- unmanned aerial vehicle --- pesticide application --- deposition uniformity --- droplets penetrability --- control efficacy --- working efficiency --- subgoal graphs --- reinforcement learning --- hierarchical path planning --- uncertain environments --- mobile robots --- deep reinforcement learning --- mobile manipulation --- robot learning --- intelligent mobile robot --- pallet transportation --- master-slave --- compact driving unit --- high-gain observer --- snake robot --- series elastic actuator --- SEA --- Robot Operating System --- ROS --- non-prehensile manipulation --- manipulation planning --- contact planning --- manipulation action sequences --- robot --- obstacle avoidance --- facial and gender recognition --- q-learning --- Q-networks --- reinforcement learning --- gait cycle --- biped robots --- minimally invasive surgery robot --- inverse kinematics --- dialytic elimination --- Newton iteration --- curvilinear obstacle --- douglas–peuker polygonal approximation --- opposite angle-based exact cell decomposition --- path planning --- mobile robot --- UAV --- auto-tuning --- machine learning --- iterative learning --- extremum-seeking --- altitude controller --- enemy avoidance --- reinforcement learning --- decision making --- hardware-in-the-loop simulation --- unmanned aerial vehicles --- path planning --- multiple mobile robots --- artificial fish swarm algorithm --- expansion logic strategy --- sample gathering problem --- mobile robots --- mathematical modeling --- numerical evaluation --- centralized architecture --- optimization --- fault recovery --- reinforcement learning --- gait adaptation --- legged robot --- bio-inspired robot --- human–machine interactive navigation --- mobile robot --- topological map --- regional growth --- trajectory planning --- position/force cooperative control --- hierarchical planning --- object-oriented --- symmetrical adaptive variable impedance --- biologically-inspired --- self-learning --- formation control --- mobile robots --- loop closure detection --- convolutional neural network --- spatial pyramid pooling --- dynamic neural networks --- mobile robot navigation --- gesture recognition --- behaviour dynamics --- real-time action recognition --- formation of robots --- non-holonomic robot --- stability analysis --- Lyapunov-like function --- target assignment --- goal exchange --- path following --- switching control --- swarm-robotics --- rendezvous consensus --- robot navigation --- victim-detection --- unmanned surface vessel --- path following --- integral line-of-sight --- finite-time currents observer --- radial basis function neural networks --- input saturation --- n/a

Advanced Mobile Robotics: Volume 3

Author:
ISBN: 9783039219469 9783039219476 Year: Pages: 270 DOI: 10.3390/books978-3-03921-947-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

Keywords

path planning --- lane change --- excellent driver model --- neural networks --- autonomous vehicle --- remotely operated vehicle --- ocean current --- cable disturbance modeling --- lumped parameter method --- sliding mode observer --- 4WS4WD vehicle --- force control --- MPC --- PSO --- path tracking --- negative-buoyancy --- tri-tilt-rotor --- autonomous underwater vehicle (AUV) --- immersion and invariance --- object mapping --- Geometric Algebra --- Differential Evolution --- non-inertial reference frame --- centrifugal force --- turning model LIP --- trajectory planning --- space robot --- hybrid bionic robot --- chameleon --- end effector --- hybrid robot --- curve fitting --- fair optimisation --- trajectory interpolation --- piezoelectric actuator --- high step-up ratio --- high efficiency --- small size --- micro mobile robot --- biomimetic robot --- micro air vehicle --- flapping --- drag-based system --- dragonfly --- snake-like robot --- singularity analysis --- system design --- dynamical model --- nonlinear differentiator --- robotic drilling --- sliding mode control --- drilling end-effector --- fault diagnosis --- quadcopter UAV --- fault-tolerant control --- sliding mode observer --- Thau observer --- smart materials --- actuators --- robots --- electro-rheological fluids --- magneto-rheological fluids --- shape memory alloys --- medical devices --- rehabilitation system --- LOS --- motion camouflage control --- parallel navigation --- missile control system --- target tracking --- variable speed --- high-speed target --- snake robots --- head-raising --- shape-fitting --- phase-shifting --- spiral curve --- servo valve --- pneumatics --- position control --- cart --- robot --- step climbing --- transportation --- stopper --- climbing robot --- safety recovery mechanism --- cable detection --- dynamic coupling analysis --- path planning --- mobile robots --- curvature constraints --- state constraints --- extend procedure --- G3-continuity --- car-like kinematics --- obstacle avoidance system --- harmonic potential field --- curvature constraint --- non-holonomic mobile robot --- computing time --- inverse kinematics --- joint limit avoidance --- kinematic singularity --- manipulator --- obstacle avoidance --- potential field --- service robot --- graph representation --- similarity measure --- mobile robot --- static environments --- path planning --- multi-objective optimization --- NSGA-II --- evolutionary operators --- mobile robot --- coalmine --- exploration --- robotics --- ATEX --- safety --- methane --- quadruped robot --- stability criterion --- dynamic gait --- glass façade cleaning robot --- wall climbing robot --- biped mechanism --- data association --- 3D-SLAM --- localization --- mapping --- disturbance-rejection control --- extended state observer (ESO) --- hover mode --- transition mode --- negative buoyancy --- quad-tilt rotor --- autonomous underwater vehicle (AUV) --- Rodrigues parameters --- UAV --- variable spray --- prescription map translation --- PID algorithm --- grip planning --- biped climbing robots --- collision avoidance --- grip optimization --- dynamic environment --- closed-loop detection --- sparse pose adjustment (SPA) --- inertial measurement unit (IMU) --- simultaneous localization and mapping (SLAM) --- non-singular fast-terminal sliding-mode control --- industrial robotic manipulator --- external disturbance --- dynamic uncertainty --- adaptive control law --- exoskeleton --- load carriage --- muscle activities --- human–robot interaction --- discomfort --- actuatorless --- alpine ski --- human–robot interaction --- mechanism --- passive skiing turn --- skiing robot --- predictable trajectory planning --- geodesic --- constrained motion --- mobile robot --- jumping robot --- hopping robot --- continuous hopping --- single actuator --- self-reconfigurable robot --- cleaning robot --- Tetris-inspired --- polyomino tiling theory --- coverage path planning --- area decomposition --- multi-criteria decision making --- design and modeling --- kinematics --- kinematic identification --- monocular vision --- action generation --- robot motion --- undiscovered sensor values --- differential wheeled robot --- powered exoskeleton --- motion sensor --- machine learning --- unmanned aerial vehicle --- pesticide application --- deposition uniformity --- droplets penetrability --- control efficacy --- working efficiency --- subgoal graphs --- reinforcement learning --- hierarchical path planning --- uncertain environments --- mobile robots --- deep reinforcement learning --- mobile manipulation --- robot learning --- intelligent mobile robot --- pallet transportation --- master-slave --- compact driving unit --- high-gain observer --- snake robot --- series elastic actuator --- SEA --- Robot Operating System --- ROS --- non-prehensile manipulation --- manipulation planning --- contact planning --- manipulation action sequences --- robot --- obstacle avoidance --- facial and gender recognition --- q-learning --- Q-networks --- reinforcement learning --- gait cycle --- biped robots --- minimally invasive surgery robot --- inverse kinematics --- dialytic elimination --- Newton iteration --- curvilinear obstacle --- douglas–peuker polygonal approximation --- opposite angle-based exact cell decomposition --- path planning --- mobile robot --- UAV --- auto-tuning --- machine learning --- iterative learning --- extremum-seeking --- altitude controller --- enemy avoidance --- reinforcement learning --- decision making --- hardware-in-the-loop simulation --- unmanned aerial vehicles --- path planning --- multiple mobile robots --- artificial fish swarm algorithm --- expansion logic strategy --- sample gathering problem --- mobile robots --- mathematical modeling --- numerical evaluation --- centralized architecture --- optimization --- fault recovery --- reinforcement learning --- gait adaptation --- legged robot --- bio-inspired robot --- human–machine interactive navigation --- mobile robot --- topological map --- regional growth --- trajectory planning --- position/force cooperative control --- hierarchical planning --- object-oriented --- symmetrical adaptive variable impedance --- biologically-inspired --- self-learning --- formation control --- mobile robots --- loop closure detection --- convolutional neural network --- spatial pyramid pooling --- dynamic neural networks --- mobile robot navigation --- gesture recognition --- behaviour dynamics --- real-time action recognition --- formation of robots --- non-holonomic robot --- stability analysis --- Lyapunov-like function --- target assignment --- goal exchange --- path following --- switching control --- swarm-robotics --- rendezvous consensus --- robot navigation --- victim-detection --- unmanned surface vessel --- path following --- integral line-of-sight --- finite-time currents observer --- radial basis function neural networks --- input saturation --- n/a

Listing 1 - 10 of 10
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (10)


License

CC by-nc-nd (10)


Language

english (8)

eng (2)


Year
From To Submit

2020 (10)