Search results: Found 9

Listing 1 - 9 of 9
Sort by
Metabolomics in Neurodegenerative Disease

Author:
ISBN: 9783039280407 / 9783039280414 Year: Pages: 184 DOI: 10.3390/books978-3-03928-041-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The range of human neurodegenerative diseases continues to pose significant unmet medical needs for societies around the world. The progressive and terminal nature of these conditions places a considerable personal burden on the individual affected but also on public health systems and health services. Tens of millions of people are indiscriminately affected by various dementias, which are rising at an alarming rate. There are no cures for many conditions, and it is clear that treatments applied as early as possible could greatly improve outcomes for patients. Therefore, new disease classification and diagnostic tools should be a key priority. Metabolomics represents a relatively new field of analytical science, which can be extremely useful in the early diagnosis of disease. The relatively unique feature of metabolites is that they sit at the intersection between the genetic background of an organism and its environment. Because many neurodegenerative diseases are not genetically inherited (instead having a range of known genetic risk factors and also a large number of unknown environmental triggers) the field of metabolomics offers great promise for the discovery of new, biologically, and clinically relevant biomarkers for neurodegenerative disorders. It is already bringing forward new knowledge in terms of the mechanisms of neurodegenerative disease.

Neuroproteomics

Authors: ---
ISBN: 9783039281060 9783039281077 Year: Pages: 318 DOI: 10.3390/books978-3-03928-107-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Neurology
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

The Neuroproteomics Special Issue overviews the unique challenges that must be addressed to carry out meaningful MS/proteomics analyses on neural tissues and the technologies that are available to meet these challenges. The articles on Alzheimer’s disease, addiction, and schizophrenia illustrate how MS/proteomics technologies can be used to improve our ability to diagnose and understand the molecular basis for neurological diseases. Several articles will be of interest to investigators beyond the field of neurological disorders. The review on the discovery of biofluid biomarkers of neurodegenerative dementias will be of interest to investigators searching for other disease biomarkers. Similarly, the review on the role of neuroproteomics in elucidating mechanisms of drug addiction provides an overview of the utility of MS/proteomics approaches for addressing critical questions in addiction neuroscience that should be applicable to investigators involved in virtually any area of biomedical research. Likewise, the article on developing targeted MS approaches for quantifying postsynaptic density proteins will be useful for any investigator who wishes to design targeted assays for virtually any protein. Finally, the peroxidase-mediated proximity labeling technology, described in the article on mapping the proteome of the synaptic cleft, will be of interest to investigators interested in mapping other spatially restricted proteomes.

Keywords

proteomics --- basal ganglia --- synapses --- synapse specificity --- neuronal circuits --- axons --- dendrites --- neurodegeneration --- synapse --- postsynaptic --- proteome --- mass spectrometry --- protein interaction networks --- connectome --- neurodegeneration --- Alzheimer’s disease --- cerebrospinal fluid --- plasma --- serum --- proteomics --- biomarkers --- LC-MS/MS --- cocaine --- addiction --- cytokine --- neuroimmune --- ventral tegmental area --- peptidylglycine ?-amidating monooxygenase --- cilia --- mating --- signal peptide --- prohormone convertase --- carboxypeptidase --- matrix metalloproteinase --- subtilisin --- pherophorin --- morphine --- opioid receptors --- conformational antibody --- analgesia --- GPCR signaling --- phosphorylation --- AMPA receptor complex --- transmembrane AMPA receptor regulatory protein --- synaptic plasticity --- adolescence --- corticosterone --- proteomics --- yohimbine --- progressive ratio --- reinstatement --- ethanol --- nicotinic receptor --- CaMKII --- PKA --- quantitative phosphoproteomics --- mouse --- phosphorylation --- nicotine --- proteomics --- proteome --- mass spectrometry --- Alzheimer’s disease --- protein aggregation --- laser capture microdissection --- splicing --- U1 snRNP --- synapse --- synaptic cleft --- trans-synaptic adhesion --- proximity labeling --- SynCAM --- Cadm --- Receptor-type tyrosine-protein phosphatase zeta --- R-PTP-zeta --- Ptprz1 --- neuroproteome --- drug abuse --- neuropeptidomics --- phosphorylation --- interactome --- cell type --- neuroscience --- proteomics --- mass spectrometry --- neuron --- proximity labeling --- affinity chromatography --- neuroproteomics --- biotinylation --- amphetamine --- spinophilin --- protein phosphatase-1 --- dopamine --- striatum --- mass spectroscopy --- bioinformatics --- FGF14 --- voltage gated channels --- schizophrenia --- autism --- Alzheimer’s Disease --- sex-specific differences --- synaptic plasticity --- cognitive impairment --- excitatory/inhibitory tone --- n/a --- postsynaptic density --- PSD --- parallel reaction monitoring --- PRM --- targeted proteomics --- data-independent acquisition --- DIA --- quantitative mass spectrometry --- n/a

Carbohydrates 2018

Authors: ---
ISBN: 9783039283163 9783039283170 Year: Pages: 172 DOI: 10.3390/books978-3-03928-317-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General) --- Science (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This book contains original papers and reviews on carbohydrate research in medicine, authored by participants of the 29th International Carbohydrate Symposium, where this topic had a special emphasis. The focus on biological events involving carbohydrates and glycoconjugates has delivered reliable approaches for disease treatment and diagnosis. Research on carbohydrate-based compounds for therapeutic applications is illustrated in various contributions, namely those covering the development of novel agents against Alzheimer’s disease, e.g. the neuroprotective C-glucosylated flavones and the isonucleoside-based cholinesterase inhibitors. New imino sugar glucosidase inhibitors are also disclosed, a class of compounds with potential for diabetes, Gaucher disease or cancer treatment. Also the development of a useful synthetic method towards multivalent glycoclusters of biomedical interest is here highlighted. The relevance of glycomimetics in drug discovery and the progress on carbohydrates in early diagnosis and cancer treatment are reviewed. Noteworthy is the chitosan-based delivery system for drug oral administration, a new biomaterial-based approach to improve bioavailability. Another study on the conformation of Streptococcus capsular polysaccharide backbones by molecular modelling provides useful information for bacterial immunotherapeutic approaches. All original contributions and reviews clearly demonstrate the potential of glycosciences for innovation in medicinal (glyco)chemistry and pharmaceutical research.

Sustainable Interdisciplinarity: Human-Nature Relations

Authors: ---
ISBN: 9783039281169 9783039281176 Year: Pages: 188 DOI: 10.3390/books978-3-03928-117-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

Sustainable interdisciplinarity focuses on human–nature relations and a multitude of contemporary overlapping research between society and the environment. A variety of disciplines have played a large part in better understanding sustainable development since its high-profile emergence approximately a quarter of a century ago. At present, the forefront of sustainability research is an array of methods, techniques, and growing knowledge base that considers past, present, and future pathways. Specific multidisciplinary concentrations within the scope of societal changes, urban landscape transformations, international environmental comparative studies, as well as key theories and dynamics relating to sustainable performance are explored. Specializations in complex sustainability issues address international governance arrangements, rules, and organizations—both public and private—within the scope of four themes: sustainability, human geography, environment, and interdisciplinary societal studies. This book contains eleven thoroughly refereed contributions concerning pressing issues that interlink sustainable interdisciplinarity with the presented themes in terms of the human–nature interface.

Seaweeds Secondary Metabolites: Successes in and/or Probable Therapeutic Applications

Author:
ISBN: 9783039283002 9783039283019 Year: Pages: 320 DOI: 10.3390/books978-3-03928-301-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Seaweeds are recognized as highly nutritious, and their use in gastronomy is increasing. Their health benefits and their potential to prevent several diseases have also been established. In this Special Issue several health effects are discussed, with more emphasis on their antitumor activity and potential use to treat Alzheimer’s disease. The key bioactive metabolites, from which phlorotannins can be highlighted, are presented, as well as some important in vivo studies. Altogether, the chapters provide in-depth information about the biological activities of seaweed metabolites, contributing to elucidate the health effects of seaweed.

Keywords

Padina pavonica --- osteosarcoma --- apoptosis --- algae --- chemo-preventive agent --- phytol --- fucosterol --- fatty acid --- laurinterol --- Laurencia --- antitumoral --- breast cancer explants --- organotypic culture --- ex vivo --- phlorotannin --- eckmaxol --- high-speed counter-current chromatography --- NMR spectroscopy --- mass spectrometry --- isolation and purification --- Ecklonia maxima --- fucoidan --- age-related macular degeneration --- VEGF --- oxidative stress --- Saccharina latissima --- Fucus vesiculosus --- Fucus distichus subsp. evanescens --- Fucus serratus --- Laminaria digitata --- Symphyocladia latiuscula --- bromophenols --- mushroom tyrosinase --- B16F10 --- melanin --- red seaweed --- bioactives --- extraction --- biorefinery --- seaweed --- gut microbiota --- prebiotics --- dietary fibre --- complex polysaccharides --- polyphenols --- polyunsaturated fatty acids --- carotenoids --- phytochemicals --- Padina pavonica --- marine algae --- osteoporosis --- bone metabolism --- bone health --- nutraceutical --- Bifurcaria bifurcata --- linear diterpenes --- extraction --- identification --- biological activities --- macroalgae --- high value applications --- phlorotannin --- amyloid-? aggregation --- insulin glycation --- dynamic simulation --- kidney --- ischemia-reperfusion injury --- Ecklonia cava --- phlorotannins --- Alzheimer’s disease --- seaweeds --- cholinesterases --- beta-secretase --- beta-amyloid aggregation --- neuroprotection --- K14HPV16 --- genotoxicity assay --- papillomavirus --- cancer --- seaweeds --- hyperpigmentation --- skin aging --- skincare --- photo-protection --- seaweeds --- secondary metabolites --- in vivo studies --- clinical trials --- health effects --- dieckol --- eckol --- fucoxanthin --- kahalalide F

Systems Analytics and Integration of Big Omics Data

Author:
ISBN: 9783039287444 / 9783039287451 Year: Pages: 202 DOI: 10.3390/books978-3-03928-745-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

A “genotype"" is essentially an organism's full hereditary information which is obtained from its parents. A ""phenotype"" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye color, metabolism, etc. One of the pressing challenges in computational and systems biology is genotype-to-phenotype prediction. This is challenging given the amount of data generated by modern Omics technologies. This “Big Data” is so large and complex that traditional data processing applications are not up to the task. Challenges arise in collection, analysis, mining, sharing, transfer, visualization, archiving, and integration of these data. In this Special Issue, there is a focus on the systems-level analysis of Omics data, recent developments in gene ontology annotation, and advances in biological pathways and network biology. The integration of Omics data with clinical and biomedical data using machine learning is explored. This Special Issue covers new methodologies in the context of gene–environment interactions, tissue-specific gene expression, and how external factors or host genetics impact the microbiome.

Keywords

tissue-specific expressed genes --- transcriptome --- tissue classification --- support vector machine --- feature selection --- bioinformatics pipelines --- algorithm development for network integration --- miRNA–gene expression networks --- multiomics integration --- network topology analysis --- candidate genes --- gene–environment interactions --- logic forest --- systemic lupus erythematosus --- Gene Ontology --- KEGG pathways --- enrichment analysis --- proteomic analysis --- plot visualization --- Alzheimer’s disease --- dementia --- cognitive impairment --- neurodegeneration --- Gene Ontology --- annotation --- biocuration --- amyloid-beta --- microtubule-associated protein tau --- artificial intelligence --- genotype --- phenotype --- deep phenotype --- data integration --- genomics --- phenomics --- precision medicine informatics --- epigenetics --- chromatin modification --- sequencing --- regulatory genomics --- disease variants --- machine learning --- multi-omics --- data integration --- curse of dimensionality --- heterogeneous data --- missing data --- class imbalance --- scalability --- genomics --- pharmacogenomics --- cell lines --- database --- drug sensitivity --- data integration --- omics data --- genomics --- RNA expression --- non-omics data --- clinical data --- epidemiological data --- challenges --- integrative analytics --- joint modeling --- multivariate analysis --- multivariate causal mediation --- distance correlation --- direct effect --- indirect effect --- causal inference --- n/a

Advances in Mucoadhesive Polymers and Formulations for Transmucosal Drug Delivery

Author:
ISBN: 9783039287529 / 9783039287536 Year: Pages: 206 DOI: 10.3390/books978-3-03928-753-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Mucoadhesive polymers are widely used in the design of dosage forms for transmucosal drug delivery to the eye, respiratory, gastrointestinal and reproductive tracts. These routes of drug administration offer a number of advantages including improved drug bioavailability, reduced frequency of administration, and the avoidance for the use of injections.

Keywords

furosemide --- electrospinning --- hydroxypropyl cellulose --- poly (vinylpyrrolidone) --- storage and loss moduli --- scanning electron microscopic images --- gellan gum --- pectin --- resveratrol --- mucoadhesive microspheres --- cytotoxicity --- in vitro permeability --- Caco-2 cells --- triple co-culture model --- Carbopol --- clobetasol --- Eudragit® E PO --- interpolyelectrolyte complex --- mucoadhesion --- oral lichen planus --- oral lyophilisates --- maltodextrin --- resuspendibility --- chitosan --- acrylated chitosan --- nanoparticles --- mucoadhesion --- mucosal membranes --- mucoadhesive polymers --- retention --- buccal mucosa drug delivery --- cyclodextrins --- films --- l-arginine --- mucoadhesive polymer --- omeprazole --- paediatric --- clotrimazole --- liposphere --- alkyl lactate --- xanthan gum --- Candida albicans --- mucoadhesion --- poly(2-ethyl-2-oxazoline) --- Carbopol® --- mucoadhesion --- interpolymer complexes --- thiolated hyaluronic acid --- hydrogel --- mucoadhesive --- biocompatibility --- controlled release --- drug delivery --- wound healing --- pluronic f127 --- thermoresponsive polymers --- thermogelling polymers --- detachment force --- rheology --- texture profile analysis --- chitosan derivatives --- mucosal drug delivery --- mucoadhesion --- trimethyl chitosan --- thiolated chitosan --- chitosan-catechol --- acrylated chitosan --- nanoparticles --- pioglitazone --- PLGA-PEG --- transmucosal permeations --- Alzheimer’s disease

Iron as Therapeutic Targets in Human Diseases Volume 1

Authors: --- ---
ISBN: 9783039280827 9783039280834 Year: Pages: 472 DOI: 10.3390/books978-3-03928-083-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions.

Keywords

cinnamic acid derivatives --- soybean seed ferritin --- iron release --- binding ability --- Fe2+-chelating activity --- reducibility --- adverse event profile --- anaemia --- bioengineering --- labile iron --- intravenous iron --- iron-carbohydrate complex --- iron processing --- iron metabolism --- infection --- innate immunity --- hepcidin --- ferritin --- anemia of inflammation --- pharmaceutical targets --- iron deficiency anemia --- nutrient iron --- oral iron therapy --- FeSO4 --- NaFeEDTA --- non-transferrin-bound iron (NTBI) --- developing countries --- Indonesia --- neurodegeneration --- mitochondria --- therapy --- heme --- haem --- Iron-sulfur --- Friedreich Ataxia --- Oxidative stress --- Iron chelators --- iron deficiency --- anemia --- cancer --- hepcidin --- patient blood management --- malaria --- iron deficiency --- hepcidin --- TNF --- children --- Africa --- Anemia --- iron deficiency --- oral iron salts --- intravenous iron --- Sucrosomial® iron --- M cells --- bioavailability --- tolerability --- efficacy --- iron --- gut microbiota --- iron supplementation --- iron transporters --- mucosal immunity --- SCFA --- intestinal inflammation --- inflammatory bowel disease (IBD) --- colorectal cancer --- oxidative stress --- anaemia --- cardiovascular disease --- chronic kidney disease --- IV iron therapy --- bone homeostasis --- iron overload --- iron deficiency --- osteoclast --- osteoblast --- osteoporosis --- neurodegeneration with brain iron accumulation --- iron chelation therapy --- multifunctional iron chelators --- fluorescent iron chelator --- 3-hydroxy-4-pyridinone --- fluorophore --- rhodamine --- membrane interactions --- bacteria --- antibacterial activity --- histidine --- iron --- anemia --- oxidative stress --- kidney --- chelation --- iron --- retina --- age-related macular degeneration (AMD) --- iron --- lipid --- obesity --- cancer --- neurodegeneration --- iron chelation --- phlebotomy --- NCOA4 --- ferritinophagy --- iron homeostasis --- erythropoiesis --- ferroptosis --- cancer --- Tfr2 --- iron metabolism --- hepcidin --- erythropoiesis --- SNC --- ferritin --- iron mobilization --- chaotropes --- flavin nucleotide --- electron transfer --- kinetics --- ferritin --- iron --- iron delivery --- nanotechnology --- nanocage --- drug delivery --- inflammation --- serum biomarker --- iron metabolism --- hepcidin --- ferroportin --- hemochromatosis --- anemia --- hepcidin --- iron deficiency anemia --- iron dextran --- neonatal period --- pig --- supplementation --- Alzheimer’s disease --- neuroinflammation --- neurodegeneration --- cytokines --- neuroimmune responses --- iron --- genetic hemochromatosis --- non transferrin bound iron --- hepcidin --- ferroportin --- venesections --- Anemia of chronic disease --- anemia of inflammation --- hepcidin --- anti-hepcidin therapy --- iron supplementation --- macrophage --- central nurse macrophage --- red pulp macrophage --- Kupffer cell --- iron metabolism --- erythropoiesis --- erythroblastic islands --- erythrophagocytosis --- inflammation --- iron homeostasis --- lung diseases --- oxygen sensing --- hypoxia --- ferritin --- hereditary hyperferritinemia --- hereditary hypoferritinemia --- iron metabolism --- cataracts syndrome --- neurodegenerative disease --- n/a --- iron --- neurodegeneration --- NBIA --- hepcidin --- iron --- lung --- acute lung injury --- COPD --- lung infection --- cystic fibrosis --- iron --- anaemia --- infection --- malaria --- immunity --- brain development --- growth --- microbiome --- hepcidin --- ferritin --- iron supplementation --- infants --- children --- low and middle income countries --- liver --- iron --- hepcidin --- Mek/Erk --- Hfe --- Bmp/Smad --- iron --- mycobacteria --- immunity --- Alzheimer’s disease --- iron homeostasis --- ferroptosis --- senescence --- chelators --- macrophages --- iron --- metabolism --- inflammation --- iron --- ferritin --- acute kidney injury --- chronic kidney disease --- vascular calcification --- iron --- hepcidin --- ferroportin --- Interleukin-6 --- infection --- rheumatoid arthritis --- iron homeostasis --- iron absorption --- non-haem iron --- flavonoids --- developmental --- iron deficiency anemia --- neonatal --- transferrin receptor --- treatment --- hemochromatosis --- HFE --- natural history --- T lymphocytes --- MHC --- CD8+ T cells --- prevention --- iron homeostasis --- hepcidin --- protein binding --- peritoneal dialysis --- iron --- hepcidin --- iron regulatory proteins --- cardiomyocyte --- chronic heart failure --- pulmonary arterial smooth muscle cells --- pulmonary arterial hypertension --- iron --- brain --- neurophysiology --- cognition --- social behavior --- didox --- iron chelators --- antitumor compound --- iron metabolism --- RRM2 --- SLC40A1 --- ferroportin --- iron overload --- non-HFE --- ferritin --- hemochromatosis --- iron --- chelation --- neurodegenerative diseases --- pituitary --- brain --- hemopexin --- heme homeostasis --- iron homeostasis --- hemolysis --- haptoglobin --- ferroptosis --- inflammation --- biomarker --- heme oxygenase --- liver --- microbiome --- trauma --- hemorrhage --- iron metabolism --- hepcidin --- iron homeostasis --- ferroportin --- n/a

Iron as Therapeutic Targets in Human Diseases Volume 2

Authors: --- ---
ISBN: 9783039281145 9783039281152 Year: Pages: 440 DOI: 10.3390/books978-3-03928-115-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions.

Keywords

cinnamic acid derivatives --- soybean seed ferritin --- iron release --- binding ability --- Fe2+-chelating activity --- reducibility --- adverse event profile --- anaemia --- bioengineering --- labile iron --- intravenous iron --- iron-carbohydrate complex --- iron processing --- iron metabolism --- infection --- innate immunity --- hepcidin --- ferritin --- anemia of inflammation --- pharmaceutical targets --- iron deficiency anemia --- nutrient iron --- oral iron therapy --- FeSO4 --- NaFeEDTA --- non-transferrin-bound iron (NTBI) --- developing countries --- Indonesia --- neurodegeneration --- mitochondria --- therapy --- heme --- haem --- Iron-sulfur --- Friedreich Ataxia --- Oxidative stress --- Iron chelators --- iron deficiency --- anemia --- cancer --- hepcidin --- patient blood management --- malaria --- iron deficiency --- hepcidin --- TNF --- children --- Africa --- Anemia --- iron deficiency --- oral iron salts --- intravenous iron --- Sucrosomial® iron --- M cells --- bioavailability --- tolerability --- efficacy --- iron --- gut microbiota --- iron supplementation --- iron transporters --- mucosal immunity --- SCFA --- intestinal inflammation --- inflammatory bowel disease (IBD) --- colorectal cancer --- oxidative stress --- anaemia --- cardiovascular disease --- chronic kidney disease --- IV iron therapy --- bone homeostasis --- iron overload --- iron deficiency --- osteoclast --- osteoblast --- osteoporosis --- neurodegeneration with brain iron accumulation --- iron chelation therapy --- multifunctional iron chelators --- fluorescent iron chelator --- 3-hydroxy-4-pyridinone --- fluorophore --- rhodamine --- membrane interactions --- bacteria --- antibacterial activity --- histidine --- iron --- anemia --- oxidative stress --- kidney --- chelation --- iron --- retina --- age-related macular degeneration (AMD) --- iron --- lipid --- obesity --- cancer --- neurodegeneration --- iron chelation --- phlebotomy --- NCOA4 --- ferritinophagy --- iron homeostasis --- erythropoiesis --- ferroptosis --- cancer --- Tfr2 --- iron metabolism --- hepcidin --- erythropoiesis --- SNC --- ferritin --- iron mobilization --- chaotropes --- flavin nucleotide --- electron transfer --- kinetics --- ferritin --- iron --- iron delivery --- nanotechnology --- nanocage --- drug delivery --- inflammation --- serum biomarker --- iron metabolism --- hepcidin --- ferroportin --- hemochromatosis --- anemia --- hepcidin --- iron deficiency anemia --- iron dextran --- neonatal period --- pig --- supplementation --- Alzheimer’s disease --- neuroinflammation --- neurodegeneration --- cytokines --- neuroimmune responses --- iron --- genetic hemochromatosis --- non transferrin bound iron --- hepcidin --- ferroportin --- venesections --- Anemia of chronic disease --- anemia of inflammation --- hepcidin --- anti-hepcidin therapy --- iron supplementation --- macrophage --- central nurse macrophage --- red pulp macrophage --- Kupffer cell --- iron metabolism --- erythropoiesis --- erythroblastic islands --- erythrophagocytosis --- inflammation --- iron homeostasis --- lung diseases --- oxygen sensing --- hypoxia --- ferritin --- hereditary hyperferritinemia --- hereditary hypoferritinemia --- iron metabolism --- cataracts syndrome --- neurodegenerative disease --- n/a --- iron --- neurodegeneration --- NBIA --- hepcidin --- iron --- lung --- acute lung injury --- COPD --- lung infection --- cystic fibrosis --- iron --- anaemia --- infection --- malaria --- immunity --- brain development --- growth --- microbiome --- hepcidin --- ferritin --- iron supplementation --- infants --- children --- low and middle income countries --- liver --- iron --- hepcidin --- Mek/Erk --- Hfe --- Bmp/Smad --- iron --- mycobacteria --- immunity --- Alzheimer’s disease --- iron homeostasis --- ferroptosis --- senescence --- chelators --- macrophages --- iron --- metabolism --- inflammation --- iron --- ferritin --- acute kidney injury --- chronic kidney disease --- vascular calcification --- iron --- hepcidin --- ferroportin --- Interleukin-6 --- infection --- rheumatoid arthritis --- iron homeostasis --- iron absorption --- non-haem iron --- flavonoids --- developmental --- iron deficiency anemia --- neonatal --- transferrin receptor --- treatment --- hemochromatosis --- HFE --- natural history --- T lymphocytes --- MHC --- CD8+ T cells --- prevention --- iron homeostasis --- hepcidin --- protein binding --- peritoneal dialysis --- iron --- hepcidin --- iron regulatory proteins --- cardiomyocyte --- chronic heart failure --- pulmonary arterial smooth muscle cells --- pulmonary arterial hypertension --- iron --- brain --- neurophysiology --- cognition --- social behavior --- didox --- iron chelators --- antitumor compound --- iron metabolism --- RRM2 --- SLC40A1 --- ferroportin --- iron overload --- non-HFE --- ferritin --- hemochromatosis --- iron --- chelation --- neurodegenerative diseases --- pituitary --- brain --- hemopexin --- heme homeostasis --- iron homeostasis --- hemolysis --- haptoglobin --- ferroptosis --- inflammation --- biomarker --- heme oxygenase --- liver --- microbiome --- trauma --- hemorrhage --- iron metabolism --- hepcidin --- iron homeostasis --- ferroportin --- n/a

Listing 1 - 9 of 9
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (9)


License

CC by-nc-nd (9)


Language

english (6)

eng (3)


Year
From To Submit

2020 (9)