Search results: Found 31

Listing 1 - 10 of 31 << page
of 4
>>
Sort by
Hollow core optical fibers

Author:
ISBN: 9783039210886 9783039210893 Year: Pages: 182 DOI: 10.3390/books978-3-03921-089-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The possibility of guiding light in air has fascinated optical scientists and engineers since the dawn of optical fiber technology. In the last few years, hollow core optical fibers have been attracting the attention of an expanding worldwide research community, furthering the design, fabrication and device implementation of specialty optical fibers. Hollow core optical fibers are entering almost any specific application field of optics from medicine to security; from telecommunication to industrial processing; from instrumentation to biology. In parallel to the increased number of applications, major advances are still being made on the optimization of hollow core fiber designs and on the study of its underlying guiding properties, as well as in the use of different materials and fabrication techniques, which, in turn, are providing even more ways of exploitation of this technology and new technical challenges. This Special Issue of Fibers rides the wave of this increasing interest in the field of hollow core optical fibers by providing an overview of the recent progress in this field as well as an updated and indicative sample of current research activities worldwide.

Discontinuous Fiber Composites

Author:
ISBN: 9783038974918 9783038974925 Year: Pages: 210 DOI: 10.3390/books978-3-03897-492-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-01-15 12:25:03
License:

Loading...
Export citation

Choose an application

Abstract

Discontinuous fiber-reinforced polymers have gained importance in the transportation industries due to their outstanding material properties, lower manufacturing costs and superior lightweight characteristics. One of the most attractive attributes of discontinuous fiber reinforced composites is the ease with which they can be manufactured in large numbers, using injection and compression molding processes.Typical processes involving discontinuous fiber reinforced thermoplastic composite materials include injection and compression molding processes as well as extrusion. Furthermore, the automotive and appliance industries also use thermosets reinforced with chopped fibers in the form of sheet molding compound and bulk molding compound, for compression and injection-compression molding processes, respectively.A big disadvantage of discontinuous fiber composites is that the configuration of the reinforcing fibers is significantly changed throughout production process, reflected in the form of fiber attrition, excessive fiber orientation, fiber jamming and fiber matrix separation. This process-induced variation of the microstructural fiber properties within the molded part introduces heterogeneity and anisotropies to the mechanical properties, which can limit the potential of discontinuous fiber reinforced composites for lightweight applications.The main aim of this Special Issue is to collect various investigations focused on the processing of discontinuous fiber reinforced composites and the effect processing has on fiber orientation, fiber length and fiber density distributions throughout the final part. Papers presenting investigations on the effect fiber configurations have on the mechanical properties of the final composite products and materials are welcome in the Special Issue. Researchers who are modeling and simulating processes involving discontinuous fiber composites as well as those performing experimental studies involving these composites are welcomed to submit papers. Authors are encouraged to present new models, constitutive laws and measuring and monitoring techniques to provide a complete framework on these groundbreaking materials and facilitate their use in different engineering applications.

Carbon Fibers and Their Composite Materials

Author:
ISBN: 9783039211029 9783039211036 Year: Pages: 186 DOI: 10.3390/books978-3-03921-103-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Carbon fiber is an oft-referenced material that serves as a means to remove mass from large transport infrastructure. Carbon fiber composites, typically plastics reinforced with the carbon fibers, are key materials in the 21st century and have already had a significant impact on reducing CO2 emissions. Though, as with any composite material, the interface where each component meets, in this case the fiber and plastic, is critical to the overall performance.

Optical Methods in Sensing and Imaging for Medical and Biological Applications

Authors: --- ---
ISBN: 9783038973706 9783038973713 Year: Pages: 288 DOI: 10.3390/books978-3-03897-371-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Medicine (General) --- Therapeutics
Added to DOAB on : 2019-01-24 12:31:31
License:

Loading...
Export citation

Choose an application

Abstract

The recent advances in optical sources and detectors have opened up new opportunities for sensing and imaging techniques which can be successfully used in biomedical and healthcare applications. This book, entitled ‘Optical Methods in Sensing and Imaging for Medical and Biological Applications’, focuses on various aspects of the research and development related to these areas. The book will be a valuable source of information presenting the recent advances in optical methods and novel techniques, as well as their applications in the fields of biomedicine and healthcare, to anyone interested in this subject.

Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites

Author:
Book Series: Schriftenreihe Kontinuumsmechanik im Maschinenbau / Karlsruher Institut für Technologie, Institut für Technische Mechanik - Bereich Kontinuumsmechanik ISSN: 2192693X ISBN: 9783731509240 Year: Volume: 15 Pages: IX, 178 p. DOI: 10.5445/KSP/1000093328 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

A discontinuous fiber-reinforced thermoset material produced by the Sheet Molding Compound process is investigated. Due to the process-related fiber orientation distribution, a composite with an anisotropic microstructure is created which crucially affects the mechanical properties. The central objectives are the modeling of the thermoelastic behavior of the composite accounting for the underlying microstructure, and the experimental characterization of the pure resin and the composite material.

ECO-COMPASS

Authors: ---
ISBN: 9783038976905 9783038976912 Year: Pages: 219 DOI: 10.3390/books978-3-03897-691-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Media and communication --- Transportation
Added to DOAB on : 2019-08-28 11:21:28
License:

Loading...
Export citation

Choose an application

Abstract

Today, mainly man-made materials, such as carbon and glass fibers, are used to produce composite parts in aviation. Renewable materials, such as natural fibers or bio-sourced resin systems, have not yet found their way into aviation. The project ECO-COMPASS aims to evaluate the potential applications of ecologically improved composite materials in the aviation sector in an international collaboration of Chinese and European partners. Natural fibers such as flax and ramie will be used for different types of reinforcements and sandwich cores. Furthermore, bio-based epoxy resins to substitute bisphenol-A based epoxy resins in secondary structures are under investigation. Adapted material protection technologies to reduce environmental influence and to improve fire resistance are needed to fulfil the demanding safety requirements in aviation. Modelling and simulation of chosen eco-composites aims for an optimized use of materials while a Life Cycle Assessment aims to prove the ecological advantages compared to synthetic state-of-the-art materials. This Special Issue provides selected papers from the project consortium partners.

Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

Authors: ---
ISBN: 9783039217922 9783039217939 Year: Pages: 150 DOI: 10.3390/books978-3-03921-793-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well.

Micro/Nano Materials for Clean Energy and Environment

Authors: ---
ISBN: 9783039211289 9783039211296 Year: Pages: 123 DOI: 10.3390/books978-3-03921-129-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:41:30
License:

Loading...
Export citation

Choose an application

Abstract

The Tsinghua University–University of Waterloo Joint Research Center for Micro/Nano Energy & Environment Technology (JCMEET) is a platform. It was established on Nov.11, 2017. The Chairperson of University Council of Tsinghua University, Dr. Xu Chen, and the President of the University of Waterloo, Dr. Feridun Hamdullahpur, attended the opening ceremony and unveiled the nameplate for the joint research center on 29th of March, 2018. The research center serves as a platform for researchers at both universities to conduct joint research in the targeted areas, and to meet regularly for information exchange, talent exchange, and knowledge mobilization, especially in the fields of micro/nano, energy, and environmental technologies. The center focuses on three main interests: micro/nano energy technology, micro/nano pollution control technology, and relevant fundamental research. In order to celebrate the first anniversary of the Joint Research Center, we were invited to serve as the Guest Editors of this Special Issue of Materials focusing on the topic of micro/nano-materials for clean energy and environment. It collects research papers from a broad range of topics related to micro/nanostructured materials aimed at future energy resources, low emission energy conversion, energy storage, energy efficiency improvement, air emission control, air monitoring, air cleaning, and many other related applications. This Special Issue provides an opportunity and example for the international community to discuss how to actively address the energy and environment issues that we are facing.

Advanced Glasses, Composites and Ceramics for High Growth Industries

Authors: --- ---
ISBN: 9783038979609 9783038979616 Year: Pages: 186 DOI: 10.3390/books978-3-03897-961-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Advanced Glasses, Composites and Ceramics for High-Growth Industries (CoACH) was a European Training Network (ETN) project (http://www.coach-etn.eu/) funded by the Horizon 2020 program. CoACH involved multiple actors in the innovation ecosystem for advanced materials, composed of five universities and ten enterprises in seven different European countries. The project studied the next generation of materials that could bring innovation in the healthcare, construction, and energy sectors, among others, from new bioactive glasses for bone implants to eco-friendly cements and new environmentally friendly thermoelectrics for energy conversion. The novel materials developed in the CoACH project pave the way for innovative products, improved cost competitiveness, and positive environmental impact. The present Special Issue contains 14 papers resulting from the CoACH project, showcasing the breadth of materials and processes developed during the project.

Novel Insights into Orbital Angular Momentum Beams: From Fundamentals, Devices to Applications

Authors: --- --- --- --- et al.
ISBN: 9783039212231 9783039212248 Year: Pages: 164 DOI: 10.3390/books978-3-03921-224-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Optics and Lights
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

It is well-known by now that the angular momentum carried by elementary particles can be categorized as spin angular momentum (SAM) and orbital angular momentum (OAM). In the early 1900s, Poynting recognized that a particle, such as a photon, can carry SAM, which has only two possible states, i.e., clockwise and anticlockwise circular polarization states. However, only fairly recently, in 1992, Allen et al. discovered that photons with helical phase fronts can carry OAM, which has infinite orthogonal states. In the past two decades, the OAM-carrying beam, due to its unique features, has gained increasing interest from many different research communities, including physics, chemistry, and engineering. Its twisted phase front and intensity distribution have enabled a variety of applications, such as micromanipulation, laser beam machining, nonlinear matter interactions, imaging, sensing, quantum cryptography and classical communications. This book aims to explore novel insights of OAM beams. It focuses on state-of-the-art advances in fundamental theories, devices and applications, as well as future perspectives of OAM beams.

Listing 1 - 10 of 31 << page
of 4
>>
Sort by
Narrow your search