Search results: Found 77

Listing 1 - 10 of 77 << page
of 8
>>
Sort by
Optimization in Control Applications

Authors: ---
ISBN: 9783038974475 9783038974482 Year: Pages: 256 DOI: 10.3390/books978-3-03897-448-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Mathematics
Added to DOAB on : 2019-01-10 11:56:17
License:

Loading...
Export citation

Choose an application

Abstract

Mathematical optimization is the selection of the best element in a set with respect to a given criterion. Optimization has become one of the most-used tools in modern control theory for computing the control law, adjusting the controller parameters (tuning), model fitting, and finding suitable conditions in order to fulfill a given closed-loop property, among others. In the simplest case, optimization consists of maximizing or minimizing a function by systematically choosing input values from a valid input set and computing the function value. Nevertheless, real-world control systems need to comply with several conditions and constraints that have to be taken into account in the problem formulation—these represent challenges in the application of the optimization algorithms.The aim of this Special Issue is to offer the state-of-the-art of the most advanced optimization techniques (online and offline) and their applications in control engineering.]

Über den Einfluss der Fußgeometrie auf die Energieeffizienz beim zweibeinigen Gehen

Author:
Book Series: Schriftenreihe des Instituts für Technische Mechanik, Karlsruher Institut für Technologie ISSN: 16143914 ISBN: 9783731508878 Year: Volume: 34 Pages: X, 292 p. DOI: 10.5445/KSP/1000089994 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

The influence of foot geometry on energy efficiency in bipedal walking is investigated. A method for the optimization of the foot geometry of a bipedal robot is developed. It is based on a planar model with arbitrary convex foot geometry in combination with a hybrid zero dynamics based controller. Optimal gaits and foot geometries are determined. The average energy consumption can be reduced by more than 80% compared to a model with point feet.

Human-Inspired Balancing and Recovery Stepping for Humanoid Robots

Author:
Book Series: Karlsruhe Series on Humanoid Robotics ISSN: 25120875 ISBN: 9783731509035 Year: Volume: 5 Pages: X, 235 p. DOI: 10.5445/KSP/1000091605 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Computer Science
Added to DOAB on : 2019-07-30 20:01:57
License:

Loading...
Export citation

Choose an application

Abstract

Robustly maintaining balance on two legs is an important challenge for humanoid robots. The work presented in this book represents a contribution to this area. It investigates efficient methods for the decision-making from internal sensors about whether and where to step, several improvements to efficient whole-body postural balancing methods, and proposes and evaluates a novel method for efficient recovery step generation, leveraging human examples and simulation-based reinforcement learning.

Phasenstabilisierung und Oberflächenaktivierung von Sauerstoffseparationsmembranen aus dotiertem Ba$_{0,5}$Sr$_{0,5}$Co$_{0,8}$Fe$_{0,2}$O$_{3-?}$

Author:
Book Series: Schriften des Instituts für Angewandte Materialien - Werkstoffe der Elektrotechnik, Karlsruher Institut für Technologie / Institut für Angewandte Materialien - Werkstoffe der Elektrotechnik ISSN: 23658029 ISBN: 9783731508472 Year: Volume: 34 Pages: IV, 246 p. DOI: 10.5445/KSP/1000086074 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

Ba$_{0,5}$Sr$_{0,5}$Co$_{0,8}$Fe$_{0,2}$O$_{3-?}$ (BSCF) is the most promising material für energy efficient oxygen separation membranes. But its electrical and transport properties are unstable at temperatures below 840 °C. Reasons are structural changes to secondary phases in the cubic lattice. By doping with Y, Ti and Nb the cubic lattice shall be stabilized. Goal of this work are analyses of the dopant’s influences on BSCF’s electrochemical properties.

Evolutionary Computation

Authors: ---
ISBN: 9783039219285 9783039219292 Year: Pages: 424 DOI: 10.3390/books978-3-03921-929-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Computational intelligence is a general term for a class of algorithms designed by nature's wisdom and human intelligence. Computer scientists have proposed many computational intelligence algorithms with heuristic features. These algorithms either mimic the evolutionary processes of the biological world, mimic the physiological structure and bodily functions of the organism,

Keywords

artificial bee colony algorithm (ABC) --- cloud model --- normal cloud model --- Y conditional cloud generator --- global optimum --- evolution --- computation --- urban design --- biology --- shape grammar --- architecture --- SPEA 2 --- energy-efficient job shop scheduling --- dispatching rule --- nonlinear convergence factor --- mutation operation --- whale optimization algorithm --- particle swarm optimization --- confidence term --- random weight --- benchmark functions --- t-test --- success rates --- average iteration times --- set-union knapsack problem --- moth search algorithm --- transfer function --- discrete algorithm --- evolutionary multi-objective optimization --- convergence point --- acceleration search --- evolutionary computation --- optimization --- bat algorithm (BA) --- bat algorithm with multiple strategy coupling (mixBA) --- CEC2013 benchmarks --- Wilcoxon test --- Friedman test --- facility layout design --- single loop --- monarch butterfly optimization --- slicing tree structure --- material handling path --- integrated design --- wireless sensor networks (WSNs) --- DV-Hop algorithm --- multi-objective DV-Hop localization algorithm --- NSGA-II-DV-Hop --- first-arrival picking --- fuzzy c-means --- particle swarm optimization --- range detection --- minimum total dominating set --- evolutionary algorithm --- genetic algorithm --- local search --- constrained optimization problems (COPs) --- evolutionary algorithms (EAs) --- firefly algorithm (FA) --- stochastic ranking (SR) --- Artificial bee colony --- swarm intelligence --- elite strategy --- dimension learning --- global optimization --- DE algorithm --- ?-Hilbert space --- topology structure --- quantum uncertainty property --- numerical simulation --- whale optimization algorithm --- flexible job shop scheduling problem --- nonlinear convergence factor --- adaptive weight --- variable neighborhood search --- elephant herding optimization --- EHO --- swarm intelligence --- individual updating strategy --- large-scale --- benchmark --- diversity maintenance --- particle swarm optimizer --- entropy --- large scale optimization --- minimum load coloring --- memetic algorithm --- evolutionary --- local search --- particle swarm optimization --- large-scale optimization --- adaptive multi-swarm --- diversity maintenance --- deep learning --- convolutional neural network --- rock types --- automatic identification --- monarch butterfly optimization --- greedy optimization algorithm --- global position updating operator --- 0-1 knapsack problems

Optimization Methods Applied to Power Systems: Volume 1

Authors: ---
ISBN: 9783039211302 9783039211319 Year: Pages: 382 DOI: 10.3390/books978-3-03921-131-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and Mixed-Integer Programming to the most modern methods based on bio-inspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.

Keywords

Cable joint --- internal defect --- thermal probability density --- power system optimization --- optimal power flow --- developed grew wolf optimizer --- energy internet --- prosumer --- energy management --- consensus --- demand response --- day-ahead load forecasting --- modular predictor --- feature selection --- micro-phasor measurement unit --- mutual information theory --- stochastic state estimation --- two-point estimation method --- JAYA algorithm --- multi-population method (MP) --- chaos optimization algorithm (COA) --- economic load dispatch problem (ELD) --- optimization methods --- constrained parameter estimation --- extended Kalman filter --- power systems --- C&I particle swarm optimization --- ringdown detection --- optimal reactive power dispatch --- loss minimization --- voltage deviation --- hybrid method --- tabu search --- particle swarm optimization --- artificial lighting --- simulation --- calibration --- radiance --- GenOpt --- street light points --- DC optimal power flow --- power transfer distribution factors --- generalized generation distribution factors --- unit commitment --- adaptive consensus algorithm --- distributed heat-electricity energy management --- eight searching sub-regions --- islanded microgrid --- dragonfly algorithm --- metaheuristic --- optimal power flow --- particle swarm optimization --- CCHP system --- energy storage --- off-design performance --- dynamic solving framework --- battery energy storage system --- micro grid --- MILP --- PCS efficiency --- piecewise linear techniques --- renewable energy sources --- optimal operation --- UC --- demand bidding --- demand response --- genetic algorithm --- load curtailment --- optimization --- hybrid renewable energy system --- pumped-hydro energy storage --- off-grid --- optimization --- HOMER software --- rural electrification --- sub-Saharan Africa --- Cameroon --- building energy management system --- HVAC system --- energy storage system --- energy flow model --- dependability --- sustainability --- data center --- power architectures --- optimization --- AC/DC hybrid active distribution --- hierarchical scheduling --- multi-stakeholders --- discrete wind driven optimization --- multiobjective optimization --- optimal power flow --- metaheuristic --- wind energy --- photovoltaic --- smart grid --- transformer-fault diagnosis --- principal component analysis --- particle swarm optimization --- support vector machine --- wind power --- integration assessment --- interactive load --- considerable decomposition --- controllable response --- SOCP relaxations --- optimal power flow --- current margins --- affine arithmetic --- interval variables --- optimizing-scenarios method --- power flow --- wind power --- active distribution system --- virtual power plant --- stochastic optimization --- decentralized and collaborative optimization --- genetic algorithm --- multi-objective particle swarm optimization algorithm --- artificial bee colony --- IEEE Std. 80-2000 --- Schwarz’s equation --- fuzzy algorithm --- radial basis function --- neural network --- ETAP --- distributed generations (DGs) --- distribution network reconfiguration --- runner-root algorithm (RRA) --- inter-turn shorted-circuit fault (ISCF) --- strong track filter (STF) --- linear discriminant analysis (LDA) --- switched reluctance machine (SRM) --- charging/discharging --- electric vehicle --- energy management --- genetic algorithm --- intelligent scatter search --- electric vehicles --- heterogeneous networks --- demand uncertainty --- power optimization --- Stackelberg game --- power system unit commitment --- hybrid membrane computing --- cross-entropy --- the genetic algorithm based P system --- the biomimetic membrane computing --- transient stability --- two-stage feature selection --- particle encoding method --- fitness function --- power factor compensation --- non-sinusoidal circuits --- geometric algebra --- evolutionary algorithms --- electric power contracts --- electric energy costs --- cost minimization --- evolutionary computation --- bio-inspired algorithms --- congestion management --- low-voltage networks --- multi-objective particle swarm optimization --- affinity propagation clustering --- optimal congestion threshold --- optimization --- magnetic field mitigation --- overhead --- underground --- passive shielding --- active shielding --- MV/LV substation --- n/a

Optimization Methods Applied to Power Systems: Volume 2

Authors: ---
ISBN: 9783039211562 9783039211579 Year: Pages: 306 DOI: 10.3390/books978-3-03921-157-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and Mixed-Integer Programming to the most modern methods based on bio-inspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.

Keywords

Cable joint --- internal defect --- thermal probability density --- power system optimization --- optimal power flow --- developed grew wolf optimizer --- energy internet --- prosumer --- energy management --- consensus --- demand response --- day-ahead load forecasting --- modular predictor --- feature selection --- micro-phasor measurement unit --- mutual information theory --- stochastic state estimation --- two-point estimation method --- JAYA algorithm --- multi-population method (MP) --- chaos optimization algorithm (COA) --- economic load dispatch problem (ELD) --- optimization methods --- constrained parameter estimation --- extended Kalman filter --- power systems --- C&I particle swarm optimization --- ringdown detection --- optimal reactive power dispatch --- loss minimization --- voltage deviation --- hybrid method --- tabu search --- particle swarm optimization --- artificial lighting --- simulation --- calibration --- radiance --- GenOpt --- street light points --- DC optimal power flow --- power transfer distribution factors --- generalized generation distribution factors --- unit commitment --- adaptive consensus algorithm --- distributed heat-electricity energy management --- eight searching sub-regions --- islanded microgrid --- dragonfly algorithm --- metaheuristic --- optimal power flow --- particle swarm optimization --- CCHP system --- energy storage --- off-design performance --- dynamic solving framework --- battery energy storage system --- micro grid --- MILP --- PCS efficiency --- piecewise linear techniques --- renewable energy sources --- optimal operation --- UC --- demand bidding --- demand response --- genetic algorithm --- load curtailment --- optimization --- hybrid renewable energy system --- pumped-hydro energy storage --- off-grid --- optimization --- HOMER software --- rural electrification --- sub-Saharan Africa --- Cameroon --- building energy management system --- HVAC system --- energy storage system --- energy flow model --- dependability --- sustainability --- data center --- power architectures --- optimization --- AC/DC hybrid active distribution --- hierarchical scheduling --- multi-stakeholders --- discrete wind driven optimization --- multiobjective optimization --- optimal power flow --- metaheuristic --- wind energy --- photovoltaic --- smart grid --- transformer-fault diagnosis --- principal component analysis --- particle swarm optimization --- support vector machine --- wind power --- integration assessment --- interactive load --- considerable decomposition --- controllable response --- SOCP relaxations --- optimal power flow --- current margins --- affine arithmetic --- interval variables --- optimizing-scenarios method --- power flow --- wind power --- active distribution system --- virtual power plant --- stochastic optimization --- decentralized and collaborative optimization --- genetic algorithm --- multi-objective particle swarm optimization algorithm --- artificial bee colony --- IEEE Std. 80-2000 --- Schwarz’s equation --- fuzzy algorithm --- radial basis function --- neural network --- ETAP --- distributed generations (DGs) --- distribution network reconfiguration --- runner-root algorithm (RRA) --- inter-turn shorted-circuit fault (ISCF) --- strong track filter (STF) --- linear discriminant analysis (LDA) --- switched reluctance machine (SRM) --- charging/discharging --- electric vehicle --- energy management --- genetic algorithm --- intelligent scatter search --- electric vehicles --- heterogeneous networks --- demand uncertainty --- power optimization --- Stackelberg game --- power system unit commitment --- hybrid membrane computing --- cross-entropy --- the genetic algorithm based P system --- the biomimetic membrane computing --- transient stability --- two-stage feature selection --- particle encoding method --- fitness function --- power factor compensation --- non-sinusoidal circuits --- geometric algebra --- evolutionary algorithms --- electric power contracts --- electric energy costs --- cost minimization --- evolutionary computation --- bio-inspired algorithms --- congestion management --- low-voltage networks --- multi-objective particle swarm optimization --- affinity propagation clustering --- optimal congestion threshold --- optimization --- magnetic field mitigation --- overhead --- underground --- passive shielding --- active shielding --- MV/LV substation --- n/a

Optimisation Models and Methods in Energy Systems

Author:
ISBN: 9783039211180 9783039211197 Year: Pages: 192 DOI: 10.3390/books978-3-03921-119-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Challenging problems arise in all segments of energy industries—generation, transmission, distribution and consumption. Optimization models and methods play a key role in offering decision/policy makers better information to assist them in making sounder decisions at different levels, ranging from operational to strategic planning.

Advances in Water Distribution Networks

Authors: ---
ISBN: 9783038975564 Year: Pages: 174 DOI: 10.3390/books978-3-03897-557-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

The Special Issue on Advances in Water Distribution Networks (WDNs) explores four important topics of research in the framework of WDNs, namely simulation and optimization modelling, topology and partitioning, water quality, and service effectiveness. With regard to the first topic, the following aspects are addressed: pressure-driven formulations, algorithms for the optimal location of control valves to minimize leakage, the benefits of water discharge prediction for the remote real time control of valves, and transients generated by pumps operating as turbines. In the context of the second topic, a topological taxonomy of WDNs is presented, and partitioning methods for the creation of district metered areas are compared. In relation to the third topic, the vulnerability to trihalomethane is assessed, and a statistical optimization model to minimize heavy metal releases is presented. Finally, the fourth topic focusses on the estimation of non-revenue water, including leakage and unauthorized consumption, and on the assessment of service under intermittent supply conditions.

Applications of Computational Intelligence to Power Systems

Author:
ISBN: 9783039217601 9783039217618 Year: Pages: 116 DOI: 10.3390/books978-3-03921-761-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-11-08 11:31:56
License:

Loading...
Export citation

Choose an application

Abstract

Electric power systems around the world are changing in terms of structure, operation, management and ownership due to technical, financial, and ideological reasons. Power systems keep on expanding in terms of geographical areas, asset additions, and the penetration of new technologies in generation, transmission, and distribution. The conventional methods for solving the power system design, planning, operation, and control problems have been extensively used for different applications, but these methods suffer from several difficulties, thus providing suboptimal solutions. Computationally intelligent methods can offer better solutions for several conditions and are being widely applied in electrical engineering applications. This Special Issue represents a thorough treatment of computational intelligence from an electrical power system engineer’s perspective. Thorough, well-organised, and up-to-date, it examines in detail some of the important aspects of this very exciting and rapidly emerging technology, including machine learning, particle swarm optimization, genetic algorithms, and deep learning systems. Written in a concise and flowing manner by experts in the area of electrical power systems who have experience in the application of computational intelligence for solving many complex and difficult power system problems, this Special Issue is ideal for professional engineers and postgraduate students entering this exciting field.

Listing 1 - 10 of 77 << page
of 8
>>
Sort by
Narrow your search