Search results: Found 30

Listing 1 - 10 of 30 << page
of 3
>>
Sort by
Brain-Computer Interfaces for Human Augmentation

Authors: --- ---
ISBN: 9783039219063 9783039219070 Year: Pages: 128 DOI: 10.3390/books978-3-03921-907-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Psychology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The field of Brain–Computer Interfaces (BCIs) has grown rapidly in the last few decades, allowing the development of faster and more reliable assistive technologies based on direct links between the brain and an external device. Novel applications of BCIs have also been proposed, especially in the area of human augmentation, i.e., enabling people to go beyond human limitations in sensory, cognitive and motor tasks. Brain-imaging techniques, such as electroencephalography, have been used to extract neural correlates of various brain processes and transform them, via machine learning, into commands for external devices. Brain stimulation technology has allowed to trigger the activation of specific brain areas to enhance the cognitive processes associated to the task at hand, hence improving performance. BCIs have therefore extended their scope from assistive technologies for people with disabilities to neuro-tools for human enhancement. This Special Issue aims at showing the recent advances in BCIs for human augmentation, highlighting new results on both traditional and novel applications. These include, but are not limited to, control of external devices, communication, cognitive enhancement, decision making and entertainment.

Neural Microelectrodes: Design and Applications

Authors: ---
ISBN: 9783039213191 9783039213207 Year: Pages: 378 DOI: 10.3390/books978-3-03921-320-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Neural electrodes enable the recording and stimulation of bioelectrical activity in the nervous system. This technology provides neuroscientists with the means to probe the functionality of neural circuitry in both health and disease. In addition, neural electrodes can deliver therapeutic stimulation for the relief of debilitating symptoms associated with neurological disorders such as Parkinson’s disease and may serve as the basis for the restoration of sensory perception through peripheral nerve and brain regions after disease or injury. Lastly, microscale neural electrodes recording signals associated with volitional movement in paralyzed individuals can be decoded for controlling external devices and prosthetic limbs or driving the stimulation of paralyzed muscles for functional movements. In spite of the promise of neural electrodes for a range of applications, chronic performance remains a goal for long-term basic science studies, as well as clinical applications. New perspectives and opportunities from fields including tissue biomechanics, materials science, and biological mechanisms of inflammation and neurodegeneration are critical to advances in neural electrode technology. This Special Issue will address the state-of-the-art knowledge and emerging opportunities for the development and demonstration of advanced neural electrodes.

Keywords

neural interface --- silicon carbide --- robust microelectrode --- microelectrode array --- liquid crystal elastomer --- neuronal recordings --- neural interfacing --- micro-electromechanical systems (MEMS) technologies --- microelectromechanical systems --- neuroscientific research --- magnetic coupling --- freely-behaving --- microelectrodes --- in vivo electrophysiology --- neural interfaces --- enteric nervous system --- conscious recording --- electrode implantation --- intracranial electrodes --- foreign body reaction --- electrode degradation --- glial encapsulation --- electrode array --- microelectrodes --- neural recording --- silicon probe --- three-dimensional --- electroless plating --- intracortical implant --- microelectrodes --- stiffness --- immunohistochemistry --- immune response --- neural interface response --- neural interface --- micromachine --- neuroscience --- biocompatibility --- training --- education --- diversity --- bias --- BRAIN Initiative --- multi-disciplinary --- micro-electromechanical systems (MEMS) --- n/a --- silicon neural probes --- LED chip --- thermoresistance --- temperature monitoring --- optogenetics --- microfluidic device --- chronic implantation --- gene modification --- neural recording --- neural amplifier --- microelectrode array --- intracortical --- sensor interface --- windowed integration sampling --- mixed-signal feedback --- multiplexing --- amorphous silicon carbide --- neural stimulation and recording --- insertion force --- microelectrodes --- neural interfaces --- intracortical --- microelectrodes --- shape-memory-polymer --- electrophysiology --- electrode --- artifact --- electrophysiology --- electrochemistry --- fast-scan cyclic voltammetry (FSCV) --- neurotechnology --- neural interface --- neuromodulation --- neuroprosthetics --- brain-machine interfaces --- intracortical implant --- microelectrodes --- softening --- immunohistochemistry --- immune response --- neural interface --- shape memory polymer --- deep brain stimulation --- fast scan cyclic voltammetry --- dopamine --- glassy carbon electrode --- magnetic resonance imaging --- system-on-chip --- neuromodulation --- bidirectional --- closed-loop --- sciatic nerve --- vagus nerve --- precision medicine --- neural probe --- intracortical --- microelectrodes --- bio-inspired --- polymer nanocomposite --- cellulose nanocrystals --- photolithography --- Parylene C --- impedance --- Utah electrode arrays --- electrode–tissue interface --- peripheral nerves --- wireless --- implantable --- microstimulators --- neuromodulation --- peripheral nerve stimulation --- neural prostheses --- microelectrode --- neural interfaces --- dextran --- neural probe --- microfabrication --- foreign body reaction --- immunohistochemistry --- polymer --- chronic --- electrocorticography --- ECoG --- micro-electrocorticography --- µECoG --- neural electrode array --- neural interfaces --- electrophysiology --- brain–computer interface --- in vivo imaging --- tissue response --- graphene --- n/a

Mineral Surface Reactions at the Nanoscale

Author:
ISBN: 9783038978961 9783038978978 Year: Pages: 220 DOI: 10.3390/books978-3-03897-897-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geology --- Earth Sciences
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of the rocks and hence the structure of the crust of the Earth during processes such as metamorphism, metasomatism, and weathering. In recent years focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical methods such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, and advanced synchrotron-based applications, to enable mineral surfaces to be imaged and analyzed at the nanoscale. Experiments are increasingly complemented by molecular simulations to confirm or predict the results of these studies. This has enabled new and exciting possibilities to elucidate the mechanisms that govern mineral–fluid reactions. In this Special Issue, “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research.

Development of CMOS-MEMS/NEMS Devices

Authors: ---
ISBN: 9783039210688 9783039210695 Year: Pages: 165 DOI: 10.3390/books978-3-03921-069-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Micro and nano-electro-mechanical system (M/NEMS) devices constitute key technological building blocks to enable increased additional functionalities within Integrated Circuits (ICs) in the More-Than-Moore era, as described in the International Technology Roadmap for Semiconductors. The CMOS ICs and M/NEMS dies can be combined in the same package (SiP), or integrated within a single chip (SoC). In the SoC approach the M/NEMS devices are monolithically integrated together with CMOS circuitry allowing the development of compact and low-cost CMOS-M/NEMS devices for multiple applications (physical sensors, chemical sensors, biosensors, actuators, energy actuators, filters, mechanical relays, and others). On-chip CMOS electronics integration can overcome limitations related to the extremely low-level signals in sub-micrometer and nanometer scale electromechanical transducers enabling novel breakthrough applications. This Special Issue aims to gather high quality research contributions dealing with MEMS and NEMS devices monolithically integrated with CMOS, independently of the final application and fabrication approach adopted (MEMS-first, interleaved MEMS, MEMS-last or others).]

Nanoparticle-Reinforced Polymers

Author:
ISBN: 9783039212835 9783039212842 Year: Pages: 334 DOI: 10.3390/books978-3-03921-284-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications.

Keywords

chemical and physical interface --- surface modification of silica --- latex compounding method --- silica/NR composite --- thermoresponsive hyperbranched polymer --- gold nanoparticles --- in-situ synthesis --- colorimetric sensor --- silver ions --- Ag nanoparticles --- catalysis --- composite membrane --- separation --- SiO2 microspheres --- inorganic nanotubes --- PHBV --- nanomaterials --- morphology --- crystallization kinetics --- nanocomposite --- conductive polymer --- solar cell --- graphene --- graphene oxide --- power-conversion efficiency --- electrode --- active layer --- interfacial layer --- layered structures --- polymer-matrix composites --- mechanical properties --- gas barrier properties --- N-isopropylacrylamide --- N-isopropylmethacrylamide --- ratiometric temperature sensing --- FRET --- chain topology --- selective adsorption --- polymer-NP interface --- organic light-emitting diodes (OLEDs) --- PFO/MEH-PPV hybrids --- SiO2/TiO2 nanocomposite --- optoelectronic properties --- fluorescent assay --- fluorescence resonance energy transfer --- conjugated polymer nanoparticles --- gold nanoparticles --- melamine --- polymers --- composites --- carbon nanoparticles --- nano-hybrids --- nanocomposites --- sol–gel --- in situ synthesis --- metal oxides --- reduced graphene oxide --- graphene-like WS2 --- bismaleimide --- mechanical properties --- carrier transport --- polypropylene nanocomposite --- molecular chain motion --- electrical breakdown --- electric energy storage --- thermoplastic nanocomposite --- polyethylene --- power cable insulation --- electrical property --- structure-property relationship --- hybrid hydrogels --- nanoparticles --- nanosheets --- clays --- polymers --- adhesion --- n/a

Groundwater Resources and Salt Water Intrusion in a Changing Environment

Authors: ---
ISBN: 9783039211975 9783039211982 Year: Pages: 176 DOI: 10.3390/books978-3-03921-198-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue presents the work of 30 scientists from 11 countries. It confirms that the impacts of global change, resulting from both climate change and increasing anthropogenic pressure, are huge on worldwide coastal areas (and critically so on some islands in the Pacific Ocean), with highly negative effects on coastal groundwater resources, which are widely affected by seawater intrusion. Some improved research methods are proposed in the contributions: using innovative hydrogeological, geophysical, and geochemical monitoring; assessing impacts of the changing environment on the coastal groundwater resources in terms of quantity and quality; and using modelling, especially to improve management approaches. The scientific research needed to face these challenges must continue to be deployed by different approaches based on the monitoring, modelling and management of groundwater resources. Novel and more efficient methods must be developed to keep up with the accelerating pace of global change.

Computational Methods of Multi-Physics Problems

Author:
ISBN: 9783039214174 9783039214181 Year: Pages: 128 DOI: 10.3390/books978-3-03921-418-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book offers a collection of six papers addressing problems associated with the computational modeling of multi-field problems. Some of the proposed contributions present novel computational techniques, while other topics focus on applying state-of-the-art techniques in order to solve coupled problems in various areas including the prediction of material failure during the lithiation process, which is of major importance in batteries; efficient models for flexoelectricity, which require higher-order continuity; the prediction of composite pipes under thermomechanical conditions; material failure in rock; and computational materials design. The latter exploits nano-scale modeling in order to predict various material properties for two-dimensional materials with applications in, for example, semiconductors. In summary, this book provides a good overview of the computational modeling of different multi-field problems.

Electrochemical Surface Science: Basics and Applications

Authors: ---
ISBN: 9783039216420 9783039216437 Year: Pages: 398 DOI: 10.3390/books978-3-03921-643-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Inorganic Chemistry
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Electrochemical surface science (EC-SS) is the natural advancement of traditional surface science (where gas–vacuum/solid interfaces are studied) to liquid (solution)/electrified solid interfaces. Such a merging between two different disciplines—i.e., surface science (SS) and electrochemistry—officially advanced ca. three decades ago. The main characteristic of EC-SS versus electrochemistry is the reductionist approach undertaken, inherited from SS and aiming to understand the microscopic processes occurring at electrodes on the atomic level. A few of the exemplary keystone tools of EC-SS include EC-scanning probe microscopies, operando and in situ spectroscopies and electron microscopies, and differential EC mass spectrometry (DEMS). EC-SS indirectly (and often unconsciously) receives a great boost from the requirement for rational design of energy conversion and storage devices for the next generation of energetic landscapes. As a matter of fact, the number of material science groups deeply involved in such a challenging field has tremendously expanded and, within such a panorama, EC and SS investigations are intimately combined in a huge number of papers. The aim of this Special Issue is to offer an open access forum where researchers in the field of electrochemistry, surface science, and materials science could outline the great advances that can be reached by exploiting EC-SS approaches. Papers addressing both the basic science and more applied issues in the field of EC-SS and energy conversion and storage materials have been published in this Special Issue.

Keywords

electrosynthesis --- switchable surfaces --- alkoxyamine surfaces --- redox monolayers --- porphyrins --- self-assembly --- surface nanostructures --- in situ EC-STM --- metal-electrolyte interface --- potential-dependent structures --- combined non-covalent control --- ECALE --- CdS --- silver single crystals --- alkanthiols --- SAMs --- EQCM --- AES --- polypyrrole --- diazonium salts --- flexible ITO --- adhesion --- redox properties --- X-ray absorption spectroscopy --- energy dispersive --- quick-XAS --- FEXRAV --- free electron laser --- electrochemistry --- photoelectrochemistry --- photochemistry --- pump &amp --- probe --- oxygen evolution reaction --- water splitting --- iridium --- thin-films --- spin-coating --- model systems --- electrocatalysts --- oxygen evolution reaction --- iridium --- nickel --- electrodeposition --- model catalyst --- water oxidation --- CO oxidation --- DFT --- hydrogen adsorption --- Pt–Ru catalysts --- ordered mesoporous carbons --- graphitization --- CO oxidation --- methanol oxidation --- direct methanol fuel cells --- electrocatalysis --- catalysts --- methanol oxidation reaction --- graphene --- DMFC --- Pt --- SOFC --- cathode --- XAFS --- in situ --- cobalt oxide --- water oxidation --- photo-electrochemistry --- hydroxyl radical --- electro-oxidation --- Lead OPD --- surface alloy --- XPS --- UPS --- EF-PEEM --- ORR --- Platinum --- PVDF --- PEMFC --- in situ ambient pressure XPS --- hard X rays --- photoelectron simulations --- solid/liquid interface --- TiO2 --- APTES --- Cu(111) --- electrochemical interface --- in-situ X-ray diffraction --- carbon nanofiber --- porous fiber --- electrospinning --- mesopore --- micropore --- porogen --- ammonia activation --- surface area --- methanol oxidation --- platinum single crystals --- pH and concentration effects --- adsorbed OH --- reduced graphene oxide --- electrophoretic deposition --- surface chemistry --- click chemistry --- gold --- palladium --- bimetallic alloy --- carbon nanofibers (CNFs) --- cyclic voltammetry (CV) --- Surface Modification --- Blackening of Steel --- Magnetite --- Corrosion Protection --- Auger-Electron Spectroscopy --- Ordered mesoporous carbon --- nitrogen doping --- cobalt-based electrocatalyst --- bifunctional oxygen electrode --- solvothermal method --- underpotential deposition (upd) --- Au --- Pt --- Pd --- nanoparticles --- cyclic voltammetry --- electrocatalysis --- operando --- near ambient pressure XPS --- scanning photoelectron microscopy --- solid oxide fuel cells --- surface science --- electrodeposited alloys --- CO electro-oxidation --- Pt single-crystal electrodes --- potential cycling --- potential stepping --- surface reconstruction --- electrocatalysis --- oxygen reduction --- ORR --- gas diffusion electrode --- platinum --- fuel cells --- thin-films --- benchmarking --- mass transport --- formic acid oxidation --- Au nanocrystals --- Pd thin films --- electrocatalysis --- d-band theory --- polymer --- silicon nanoparticles --- EPR spectroscopy --- photoconversion --- n/a

Recent Advances in Novel Materials for Future Spintronics

Authors: --- ---
ISBN: 9783038979760 9783038979777 Year: Pages: 152 DOI: 10.3390/books978-3-03897-977-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

As we all know, electrons carry both charge and spin. The processing of information in conventional electronic devices is based only on the charge of electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors, and insulators are the basic materials that constitute the components of electronic devices, and these types of materials have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals (including zero-gap half-metals), magnetic semiconductors (including spin-gapless semiconductors), dilute magnetic semiconductors, and magnetic insulators are the materials that will form the basis for spintronic devices. This book aims to collect a range of papers on novel materials that have intriguing physical properties and numerous potential practical applications in spintronics.

ECO-COMPASS

Authors: ---
ISBN: 9783038976905 9783038976912 Year: Pages: 219 DOI: 10.3390/books978-3-03897-691-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Media and communication --- Transportation
Added to DOAB on : 2019-08-28 11:21:28
License:

Loading...
Export citation

Choose an application

Abstract

Today, mainly man-made materials, such as carbon and glass fibers, are used to produce composite parts in aviation. Renewable materials, such as natural fibers or bio-sourced resin systems, have not yet found their way into aviation. The project ECO-COMPASS aims to evaluate the potential applications of ecologically improved composite materials in the aviation sector in an international collaboration of Chinese and European partners. Natural fibers such as flax and ramie will be used for different types of reinforcements and sandwich cores. Furthermore, bio-based epoxy resins to substitute bisphenol-A based epoxy resins in secondary structures are under investigation. Adapted material protection technologies to reduce environmental influence and to improve fire resistance are needed to fulfil the demanding safety requirements in aviation. Modelling and simulation of chosen eco-composites aims for an optimized use of materials while a Life Cycle Assessment aims to prove the ecological advantages compared to synthetic state-of-the-art materials. This Special Issue provides selected papers from the project consortium partners.

Listing 1 - 10 of 30 << page
of 3
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (30)


License

CC by-nc-nd (30)


Language

english (30)


Year
From To Submit

2019 (30)