Search results: Found 9

Listing 1 - 9 of 9
Sort by
Applications of Quantum Mechanical Techniques to Areas Outside of Quantum Mechanics

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454273 Year: Pages: 162 DOI: 10.3389/978-2-88945-427-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

This book deals with applications of quantum mechanical techniques to areas outside of quantum mechanics, so-called quantum-like modeling. Research in this area has grown over the last 15 years. But even already more than 50 years ago, the interaction between Physics Nobelist Pauli and the psychologist Carl Jung in the 1950's on seeking to find analogous uses of the complementarity principle from quantum mechanics in psychology needs noting. This book does NOT want to advance that society is quantum mechanical! The macroscopic world is manifestly not quantum mechanical. But this rules not out that one can use concepts and the mathematical apparatus from quantum physics in a macroscopic environment. A mainstay ingredient of quantum mechanics, is 'quantum probability' and this tool has been proven to be useful in the mathematical modelling of decision making. In the most basic experiment of quantum physics, the double slit experiment, it is known (from the works of A. Khrennikov) that the law of total probability is violated. It is now well documented that several decision making paradoxes in psychology and economics (such as the Ellsberg paradox) do exhibit this violation of the law of total probability. When data is collected with experiments which test 'non-rational' decision making behaviour, one can observe that such data often exhibits a complex non-commutative structure, which may be even more complex than if one considers the structure allied to the basic two slit experiment. The community exploring quantum-like models has tried to address how quantum probability can help in better explaining those paradoxes. Research has now been published in very high standing journals on resolving some of the paradoxes with the mathematics of quantum physics. The aim of this book is to collect the contributions of world's leading experts in quantum like modeling in decision making, psychology, cognition, economics, and finance.

Quantum simulation experiments with superconducting circuits

Author:
Book Series: Experimental Condensed Matter Physics / Karlsruher Institut für Technologie, Physikalisches Institut ISSN: 21919925 ISBN: 9783731507802 Year: Volume: 20 Pages: III, 149 p. DOI: 10.5445/KSP/1000081315 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Physics (General)
Added to DOAB on : 2019-07-28 18:37:01
License:

Loading...
Export citation

Choose an application

Abstract

While the universal quantum computer seems not in reach for the near future, this work focusses on analog quantum simulation of intriguing quantum models of light-matter interactions, with the goal of achieving a computational speed-up as compared to classical hardware. Existing building blocks of quantum hardware are used from superconducting circuits, that have proven to be a very suitable experimental platform for the implementation of model Hamiltonians at a high degree of controllability.

Density Functional Calculations - Recent Progresses of Theory and Application

Author:
ISBN: 9781789231328 9781789231335 Year: Pages: 272 DOI: 10.5772/intechopen.68548 Language: English
Publisher: IntechOpen
Subject: Chemistry (General)
Added to DOAB on : 2019-10-03 07:51:51

Loading...
Export citation

Choose an application

Abstract

Density functional theory (DFT) ranks as the most widely used quantum mechanical method and plays an increasingly larger role in a number of disciplines such as chemistry, physics, material, biology, and pharmacy. DFT has long been used to complement experimental investigations, while now it is also regarded as an indispensable and powerful tool for researchers of different fields. This book is divided into five sections that include original chapters written by experts in their fields: ""Method Development and Validation,"" ""Spectra and Thermodynamics,"" ""Catalysis and Mechanism,"" ""Material and Molecular Design,"" and ""Multidisciplinary Integration."" I would like to express my sincere gratitude to all contributors and recommend this book to both beginners and experienced researchers.

Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical Systems - Recent Developments and Advanced Applications

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456260 Year: Pages: 188 DOI: 10.3389/978-2-88945-626-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

The QM/MM method, short for quantum mechanical/molecular mechanical, is a highly versatile approach for the study of chemical phenomena, combining the accuracy of quantum chemistry to describe the region of interest with the efficiency of molecular mechanical potentials to represent the remaining part of the system. Originally conceived in the 1970s by the influential work of the the Nobel laureates Martin Karplus, Michael Levitt and Arieh Warshel, QM/MM techniques have evolved into one of the most accurate and general approaches to investigate the properties of chemical systems via computational methods. Whereas the first applications have been focused on studies of organic and biomolecular systems, a large variety of QM/MM implementations have been developed over the last decades, extending the range of applicability to address research questions relevant for both solution and solid-state chemistry as well. Despite approaching their 50th anniversary in 2022, the formulation of improved QM/MM methods is still an active field of research, with the aim to (i) extend the applicability to address an even broader range of research questions in chemistry and related disciplines, and (ii) further push the accuracy achieved in the QM/MM description beyond that of established formulations. While being a highly successful approach on its own, the combination of the QM/MM strategy with other established theoretical techniques greatly extends the capabilities of the computational approaches. For instance the integration of a suitable QM/MM technique into the highly successful Monte-Carlo and molecular dynamics simulation protocols enables the description of the chemical systems on the basis of an ensemble that is in part constructed on a quantum-mechanical basis. This eBook presents the contributions of a recent Research Topic published in Frontiers in Chemistry, that highlight novel approaches as well as advanced applications of QM/MM method to a broad variety of targets. In total 2 review articles and 10 original research contributions from 48 authors are presented, covering 12 different countries on four continents. The range of research questions addressed by the individual contributions provide a lucid overview on the versatility of the QM/MM method, and demonstrate the general applicability and accuracy that can be achieved for different problems in chemical sciences. Together with the development of improved algorithms to enhance the capabilities of quantum chemical methods and the continuous advancement in the capacities of computational resources, it can be expected that the impact of QM/MM methods in chemical sciences will be further increased already in the near future.

Advances in Organic Conductors and Superconductors

Author:
ISBN: 9783038971801 9783038971818 Year: Pages: 344 DOI: 10.3390/books978-3-03897-181-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2018-10-04 12:13:06
License:

Loading...
Export citation

Choose an application

Abstract

ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms.Crystalline conductors and superconductors based on organic molecules are a rapidly progressing field of solid-state science, comprising chemists, and experimental and theoretical physicists from all around the world. In focus are solids with electronic properties governed by delocalized π-electrons. Although carbon-based materials of various shades have gained enormous interest in recent years, charge transfer salts are still paradigmatic in this field. Progress in molecular design is achieved via tiny but ingenious modifications, as well as by fundamentally different approaches. The wealth of exciting physical phenomena is unprecedented and could not have been imagined when the field took off almost half a century ago. Organic low-dimensional conductors are prime examples of Luttinger liquids, exhibit a tendency toward Fermi surface instabilities, but can also be tuned across a dimension¬a¬lity-driven phase diagram like no other system. Superconductivity comes at the border to ordered phases in the spin and charge sectors, and, at high fields, the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state is well established. The interplay between charge and magnetic order is still under debate, but electronic ferroelectricity is well established. After decades of intense search, the spin liquid state was first discovered in organic conductors when the amount of geometrical frustration and electronic correlations is just right. They drive the metal and superconductor into an insulating Mott state, solely via electron–electron interactions. However, what do we know about the effect of disorder? Can we tune the electronic properties by pressure, by light, or by field? Research is still addressing basic questions, but devices are not out of reach. These are currently open questions, as well as hot and timely topics. The present Special Issue on “Advances in Organic Conductors and Superconductors” provides a status report summarizing the progress achieved in the last five years.

Photon Counting - Fundamentals and Applications

Authors: ---
ISBN: 9789535139072 9789535139089 9789535140818 Year: Pages: 296 DOI: 10.5772/intechopen.69183 Language: English
Publisher: IntechOpen
Subject: Optics and Lights
Added to DOAB on : 2019-10-03 07:51:51

Loading...
Export citation

Choose an application

Abstract

Photon counting is a unified name for the techniques using single-photon detection for accumulative measurements of the light flux, normally occurring under extremely low-light conditions. Nowadays, this approach can be applied to the wide variety of the radiation wavelengths, starting from X-ray and deep ultraviolet transitions and ending with far-infrared part of the spectrum. As a special tribute to the photon counting, the studies of cosmic microwave background radiation in astronomy, the experiments with muon detection, and the large-scale fundamental experiments on the nature of matter should be noted. The book provides readers with an overview on the fundamentals and state-of-the-art applications of photon counting technique in the applied science and everyday life.

Hybrid Advanced Techniques for Forecasting in Energy Sector

Author:
ISBN: 9783038972907 9783038972914 Year: Pages: 250 DOI: 10.3390/books978-3-03897-291-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science --- General and Civil Engineering
Added to DOAB on : 2018-10-19 10:39:42
License:

Loading...
Export citation

Choose an application

Abstract

Accurate forecasting performance in the energy sector is a primary factor in the modern restructured power market, accomplished by any novel advanced hybrid techniques. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated by factors such as seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. To comprehensively address this issue, it is insufficient to concentrate only on simply hybridizing evolutionary algorithms with each other, or on hybridizing evolutionary algorithms with chaotic mapping, quantum computing, recurrent and seasonal mechanisms, and fuzzy inference theory in order to determine suitable parameters for an existing model. It is necessary to also consider hybridizing or combining two or more existing models (e.g., neuro-fuzzy model, BPNN-fuzzy model, seasonal support vector regression–chaotic quantum particle swarm optimization (SSVR-CQPSO), etc.). These advanced novel hybrid techniques can provide more satisfactory energy forecasting performances.This book aimed to attract researchers with an interest in the research areas described above. Specifically, we were interested in contributions towards recent developments, i.e., hybridizing or combining any advanced techniques in energy forecasting, with the superior capabilities over the traditional forecasting approaches, with the ability to overcome some embedded drawbacks, and with the very superiority to achieve significant improved forecasting accuracy.

Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

Author:
ISBN: 9783038972860 9783038972877 Year: Pages: 250 DOI: 10.3390/books978-3-03897-287-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2018-10-19 11:45:03
License:

Loading...
Export citation

Choose an application

Abstract

More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers.This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy.

Kernel Methods and Hybrid Evolutionary Algorithms in Energy Forecasting

Author:
ISBN: 9783038972921 9783038972938 Year: Pages: 186 DOI: 10.3390/books978-3-03897-293-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science --- General and Civil Engineering
Added to DOAB on : 2018-10-22 10:01:53
License:

Loading...
Export citation

Choose an application

Abstract

The development of kernel methods and hybrid evolutionary algorithms (HEAs) to support experts in energy forecasting is of great importance to improving the accuracy of the actions derived from an energy decision maker, and it is crucial that they are theoretically sound. In addition, more accurate or more precise energy demand forecasts are required when decisions are made in a competitive environment. Therefore, this is of special relevance in the Big Data era. These forecasts are usually based on a complex function combination. These models have resulted in over-reliance on the use of informal judgment and higher expense if lacking the ability to catch the data patterns. The novel applications of kernel methods and hybrid evolutionary algorithms can provide more satisfactory parameters in forecasting models. We aimed to attract researchers with an interest in the research areas described above. Specifically, we were interested in contributions towards the development of HEAs with kernel methods or with other novel methods (e.g., chaotic mapping mechanism, fuzzy theory, and quantum computing mechanism), which, with superior capabilities over the traditional optimization approaches, aim to overcome some embedded drawbacks and then apply these new HEAs to be hybridized with original forecasting models to significantly improve forecasting accuracy.

Listing 1 - 9 of 9
Sort by
Narrow your search