Search results: Found 9

Listing 1 - 9 of 9
Sort by
Update on Dementia

Author:
ISBN: 9789535126546 9789535126553 9789535141785 Year: Pages: 558 DOI: 10.5772/61983 Language: English
Publisher: IntechOpen
Subject: Neurology
Added to DOAB on : 2019-10-03 07:51:49

Loading...
Export citation

Choose an application

Abstract

The dementia challenge is the largest health effort of the times we live in. The whole society has to move to a realization of the significance of prioritization to make an attempt in the direction of mental health promotion and dementia risk reduction. New priorities for research are needed to go far beyond the usual goal of constructing a disease course-modifying medication. Moreover, a full empowerment and engagement of men and women living with dementia and their caregivers, overcoming stigma and discrimination should be promoted. The common efforts and the final aim will have to be the progress of a ''dementia-constructive'' world, where people with dementia can take advantage of equal opportunities.

Application of Nonlinear Analysis to the Study of Complex Systems in Neuroscience and Behavioral Research

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199969 Year: Pages: 271 DOI: 10.3389/978-2-88919-996-9 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Although nonlinear dynamics have been mastered by physicists and mathematicians for a long time (as most physical systems are inherently nonlinear in nature), the recent successful application of nonlinear methods to modeling and predicting several evolutionary, ecological, physiological, and biochemical processes has generated great interest and enthusiasm among researchers in computational neuroscience and cognitive psychology. Additionally, in the last years it has been demonstrated that nonlinear analysis can be successfully used to model not only basic cellular and molecular data but also complex cognitive processes and behavioral interactions. The theoretical features of nonlinear systems (such unstable periodic orbits, period-doubling bifurcations and phase space dynamics) have already been successfully applied by several research groups to analyze the behavior of a variety of neuronal and cognitive processes. Additionally the concept of strange attractors has lead to a new understanding of information processing which considers higher cognitive functions (such as language, attention, memory and decision making) as complex systems emerging from the dynamic interaction between parallel streams of information flowing between highly interconnected neuronal clusters organized in a widely distributed circuit and modulated by key central nodes. Furthermore, the paradigm of self-organization derived from the nonlinear dynamics theory has offered an interesting account of the phenomenon of emergence of new complex cognitive structures from random and non-deterministic patterns, similarly to what has been previously observed in nonlinear studies of fluid dynamics. Finally, the challenges of coupling massive amount of data related to brain function generated from new research fields in experimental neuroscience (such as magnetoencephalography, optogenetics and single-cell intra-operative recordings of neuronal activity) have generated the necessity of new research strategies which incorporate complex pattern analysis as an important feature of their algorithms. Up to now nonlinear dynamics has already been successfully employed to model both basic single and multiple neurons activity (such as single-cell firing patterns, neural networks synchronization, autonomic activity, electroencephalographic measurements, and noise modulation in the cerebellum), as well as higher cognitive functions and complex psychiatric disorders. Similarly, previous experimental studies have suggested that several cognitive functions can be successfully modeled with basis on the transient activity of large-scale brain networks in the presence of noise. Such studies have demonstrated that it is possible to represent typical decision-making paradigms of neuroeconomics by dynamic models governed by ordinary differential equations with a finite number of possibilities at the decision points and basic heuristic rules which incorporate variable degrees of uncertainty. This e-book has include frontline research in computational neuroscience and cognitive psychology involving applications of nonlinear analysis, especially regarding the representation and modeling of complex neural and cognitive systems. Several experts teams around the world have provided frontline theoretical and experimental contributions (as well as reviews, perspectives and commentaries) in the fields of nonlinear modeling of cognitive systems, chaotic dynamics in computational neuroscience, fractal analysis of biological brain data, nonlinear dynamics in neural networks research, nonlinear and fuzzy logics in complex neural systems, nonlinear analysis of psychiatric disorders and dynamic modeling of sensorimotor coordination.

How Humans Recognize Objects: Segmentation, Categorization and Individual Identification

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199402 Year: Pages: 265 DOI: 10.3389/978-2-88919-940-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Psychology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Human beings experience a world of objects: bounded entities that occupy space and persist through time. Our actions are directed toward objects, and our language describes objects. We categorize objects into kinds that have different typical properties and behaviors. We regard some kinds of objects – each other, for example – as animate agents capable of independent experience and action, while we regard other kinds of objects as inert. We re-identify objects, immediately and without conscious deliberation, after days or even years of non-observation, and often following changes in the features, locations, or contexts of the objects being re-identified. Comparative, developmental and adult observations using a variety of approaches and methods have yielded a detailed understanding of object detection and recognition by the visual system and an advancing understanding of haptic and auditory information processing. Many fundamental questions, however, remain unanswered. What, for example, physically constitutes an “object”? How do specific, classically-characterizable object boundaries emerge from the physical dynamics described by quantum theory, and can this emergence process be described independently of any assumptions regarding the perceptual capabilities of observers? How are visual motion and feature information combined to create object information? How are the object trajectories that indicate persistence to human observers implemented, and how are these trajectory representations bound to feature representations? How, for example, are point-light walkers recognized as single objects? How are conflicts between trajectory-driven and feature-driven identifications of objects resolved, for example in multiple-object tracking situations? Are there separate “what” and “where” processing streams for haptic and auditory perception? Are there haptic and/or auditory equivalents of the visual object file? Are there equivalents of the visual object token? How are object-identification conflicts between different perceptual systems resolved? Is the common assumption that “persistent object” is a fundamental innate category justified? How does the ability to identify and categorize objects relate to the ability to name and describe them using language? How are features that an individual object had in the past but does not have currently represented? How are categorical constraints on how objects move or act represented, and how do such constraints influence categorization and the re-identification of individuals? How do human beings re-identify objects, including each other, as persistent individuals across changes in location, context and features, even after gaps in observation lasting months or years? How do human capabilities for object categorization and re-identification over time relate to those of other species, and how do human infants develop these capabilities? What can modeling approaches such as cognitive robotics tell us about the answers to these questions? Primary research reports, reviews, and hypothesis and theory papers addressing questions relevant to the understanding of perceptual object segmentation, categorization and individual identification at any scale and from any experimental or modeling perspective are solicited for this Research Topic. Papers that review particular sets of issues from multiple disciplinary perspectives or that advance integrative hypotheses or models that take data from multiple experimental approaches into account are especially encouraged.

At Risk for Neuropsychiatric Disorders: An Affective Neuroscience Approach to Understanding the Spectrum

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450268 Year: Pages: 260 DOI: 10.3389/978-2-88945-026-8 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Neuropsychiatric disorders such as schizophrenia, bipolar disorder, depression, anxiety disorders, and other mental disorders constitute about 13% of the global burden of disease surpassing both cardiovascular disease and cancer. The total cost worldwide of these diseases is estimated to exceed 100 million disability-adjusted life years. In order to begin to address this important problem, the present Research Topic brings together a group of leading affective neuroscience researchers to present their state-of-the-art findings using an affective neuroscience approach to investigate the spectrum of neuropsychiatric disorders from patients to those at risk. They focus on different aspects of the emotional and social cognitive disturbances which are core features of neuropsychiatric disorders. While progress has been slow over last couple of decades, we are finally beginning to glimpse some of the underlying neural mechanisms of the emotional and social cognitive disturbances in patients and those at risk. With the technological advances in affective neuroscience and neuroimaging presented in this volume, we hope that progress will be much swifter in the coming years such that we can provide better care for patients and those at risk.

Mental Practice - Clinical and Experimental Research in Imagery and Action Observation

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198399 Year: Pages: 208 DOI: 10.3389/978-2-88919-839-9 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

There is now strong evidence demonstrating that the brain simulates action and other functions. Such action simulation can be evoked through conscious mental rehearsal of movement or imagery, but also through passive action observation watching movements in others. Furthermore, there is evidence to suggest that mental rehearsal of movement, or mental practice, can produce improvements normally attributed to practising actual movements. It is currently assumed that such improvements are due to neural activation associated with action simulation. However the neuroscience of mental practice efficacy is still poorly understood. The aim of this research topic is to clarify the underlying mechanisms of mental practice, bringing evidence from cognitive neuroscience, experimental neuropsychology, sport and movement science, and clinical neurology. It also attempts to address confusion regarding the concepts of imagery and observation, which has hampered the progression of mental practice research both scientifically and applied. As well as reviews, theoretical, and position articles, this research topic includes original neuroimaging, experimental, and patient research addressing, among others, the following issues. Neuroimaging studies provide strong evidence for action simulation, but the link to behavioural change and functional outcome is weak. What is the evidence that mental practice efficacy is driven by neuroplasticity processes evoked by action simulation? This research topic includes contributions on neural correlates and behaviour with regards to imagery and action observation. Much of the mental practice efficacy evidence comes from longstanding research within sport science. However, what does mental practice entail in these contexts, and to what extent is it compatible with the cognitive neuroscience perspective of action simulation? This research topic will include contributions that consider both evidence and concepts with regards to imagery and action observation, in an attempt to build an interdisciplinary consensus on the nature and application of mental practice. Mental practice is perceived as a promising motor rehabilitation technique, but critically there is lack of clarity or consensus on what mental practice treatment should entail. It is also not clear what are the most appropriate outcomes to measure imagery ability and cognitive or behavioural change following mental practice. A further important issue that needs consideration as part of this research topic is dosage, as it is currently unclear how much mental practice is appropriate and whether this depends on patient variables such as age, cognitive functioning, motor function, or pathophysiology.

Reward- and aversion-related processing in the brain: translational evidence for separate and shared circuits

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198368 Year: Pages: 181 DOI: 10.3389/978-2-88919-836-8 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Affective brain circuits underpin our moods and emotions. Appetitive and aversive stimuli from our exteroceptive and interoceptive worlds play a key role in the activity of these circuits, but we still do not know precisely how to characterize these so-called reward-related and aversion-related systems. Moreover, we do we yet understand how they interact anatomically or functionally. The aim of the current project was to gather some translational evidence to help clarify the role of such circuits. A multi-dimensional problem in its own right, the book contains 14 works from authors exploring these questions at many levels, from the cellular to the cognitive-behavioral, and from both experimental and conceptual viewpoints. The editorial which introduces the book provides brief summaries of each perspective (Hayes, Northoff, Greenshaw, 2015). While questions of how to accurately define affect- and emotion-related concepts at the psychological level are far from answered, here we have attempted to provide some insight into the brain-based underpinnings of such processes. The near future will undoubtedly involve making new inroads and will require the joint efforts of behavioral, brain-based, and philosophical perspectives to do so.

Toward a Unified View of the Speed-Accuracy Trade-Off: Behaviour, Neurophysiology and Modelling

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197569 Year: Pages: 160 DOI: 10.3389/978-2-88919-756-9 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Everyone is familiar with the speed-accuracy trade-off (SAT). To make good choices, we need to balance the conflicting demands of fast and accurate decision making. After all, hasty decisions often lead to poor choices, but accurate decisions may be useless if they take too long. This notion is intuitive because it reflects a fundamental aspect of cognition: not only do we deliberate over the evidence for decisions, but we can control that deliberative process. This control raises many questions for the study of choice behaviour and executive function. For example, how do we figure out the appropriate balance between speed and accuracy on a given task? How do we impose that balance on our decisions, and what is its neural basis? Researchers have addressed these and related questions for decades, using a variety of methods and offering answers at different levels of abstraction. Given this diverse methodology, our aim is to provide a unified view of the SAT. Extensive analysis of choice behaviour suggests that we make decisions by accumulating evidence until some criterion is reached. Thus, adjusting the criterion controls how long we accumulate evidence and therefore the speed and accuracy of decisions. This simple framework provides the platform for our unified view. In the pages that follow, leading experts in decision neuroscience consider the history of SAT research, strategies for determining the optimal balance between speed and accuracy, conditions under which this seemingly ubiquitous phenomenon breaks down, and the neural mechanisms that may implement the computations of our unifying framework.

Integrating Computational and Neural Findings in Visual Object Perception

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198733 Year: Pages: 137 DOI: 10.3389/978-2-88919-873-3 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The articles in this Research Topic provide a state-of-the-art overview of the current progress in integrating computational and empirical research on visual object recognition. Developments in this exciting multidisciplinary field have recently gained momentum: High performance computing enabled breakthroughs in computer vision and computational neuroscience. In parallel, innovative machine learning applications have recently become available for datamining the large-scale, high resolution brain data acquired with (ultra-high field) fMRI and dense multi-unit recordings. Finally, new techniques to integrate such rich simulated and empirical datasets for direct model testing could aid the development of a comprehensive brain model. We hope that this Research Topic contributes to these encouraging advances and inspires future research avenues in computational and empirical neuroscience.

Individual Differences: From Neurobiological Bases to New Insight on Approach and Avoidance Behavior

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197156 Year: Pages: 110 DOI: 10.3389/978-2-88919-715-6 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

The superordinate division of emotions is distributed along a bipolar dimension of affective valence, from approaching rewarding situations to avoiding punitive situations. Avoiding and approaching behaviors determine the disposition to the primary emotions of fear and attachment and the behavioral responses to the environmental stimuli of danger, novelty and reward. Approach or avoidance behaviors are associated with the brain pathways controlling cognitive and attentional function, reward sensitivity and emotional expression, involving prefrontal cortex, amygdala, striatum and cerebellum. Individual differences in approach and avoidance behavior might be modulated by normal variance in the level of functioning of different neurotransmitter systems, such as dopaminergic, serotoninergic, noradrenergic and endocannabinoid systems as well as many peptides such as corticotropin releasing hormone. These substances act at various central target areas to increase intensity of appetitive or defensive motivation. Physiologically, personality temperaments of approach and avoidance are viewed as instigators of propensity. They produce immediate affective, cognitive and behavioral inclinations in response to stimuli and orient individuals across domains and situations in a consistent fashion. Although the action undoubtedly emerges directly from these temperamental proclivities, ultimate behavioral outcomes are often a function of the integration among goal pursuit, self-regulation, and temperament trait. Defective coping strategies to aversive or rewarding stimuli characterize the patho-physiology of anxiety- and stress-related disorders or compulsive and addiction behaviors, respectively. Individuals with neuropsychiatric symptoms such as depression, suicidal behavior, bipolar mania, schizophrenia, substance use disorders, pathological gambling and anxiety disorders have scores which fall at the extreme tails of the normal distribution for a specific temperamental trait. The present Research Topic on the individual differences in emotional and motivational processing emphasizes the link between neuronal pattern and behavioral expression. The Topic includes experimental and clinical researches addressing the individual differences related to approach and avoidance and their behavioral characterization, structural and neurochemical profiles, synaptic connections, and receptor expressions. Studies are organized in a framework that puts in evidence the phenotypic expression and neurobiological patterns characterizing the individual differences and their biological variance.

Listing 1 - 9 of 9
Sort by
Narrow your search

Publisher

Frontiers Media SA (8)

IntechOpen (1)


License

CC by (8)

unknown (1)


Language

english (9)


Year
From To Submit

2016 (9)