Search results: Found 4

Listing 1 - 4 of 4
Sort by
Glial Cells: Managers of Neuro-immunity

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198351 Year: Pages: 224 DOI: 10.3389/978-2-88919-835-1 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Immune responses within the brain are still scarcely explored. Nerve tissue damage is accompanied by the activation of glial cells, primarily microglia and astroglia, and such activation is responsible for the release of cytokines and chemokines that maintain the local inflammatory response and actively recruit lymphocytes and monocytes to the damaged areas. Theoretically, these responses are designed to repair the brain damage. However, alterations, or a chronic perpetuation of these responses may underlie a number of neuro-pathologies. It is thought that each inflammatory scenario within the brain have a specific biochemical footprint characterized by the release of determined cytokines, chemokines and growing factors able to define particular immunological responses. Alongside, glial cells transform their cell body, become larger and develop higher number of branches adopting an active morphological phenotype. These changes are related with the search of interactions with other cells, such as bystander resident cells of the brain parenchyma, but also cells homing from the blood stream. In this process, microglia and astrocytes communicates with other cells by the formation of specific intercellular connections that are still poorly understood. These interactions are complex and entail the arrangement of cytoskeletal compounds, secretory and phagocytic domains. In this particular crosstalk there is a two-way communication in which glial cells and target cells come together establishing interfaces with specific information exchange. This way, glial cells orchestrate the particular response recruiting cellular subsets within the central nervous system and organizing the resolution of the brain damage. In this Frontiers Research Topic, we compile a selection of articles unfolding diverse aspects of glial-derived inflammation, focused on neurodegenerative diseases and other nervous system disorders, with special emphasis on microglia/macrophages as leading actors managing neuro-immunity.

50th Anniversary of Adult Neurogenesis: Olfaction, Hippocampus and Beyond

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199631 Year: Pages: 243 DOI: 10.3389/978-2-88919-963-1 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

In the mid-sixties, the discovery by Altman and co-workers of neurogenesis in the adult brain changed the previous conception of the immutability of this organ during adulthood sustained among others by Cajal. This discovery was ignored up to eighty’s when Nottebohm demonstrated neurogenesis in birds. Subsequently, two main neurogenic zones were characterized: the subventricular zone of the lateral ventricle and the subgranular layer of the dentate gyrus. Half century later, the exact role of new neurons in the adult brain is not completely understand. This book is composed by a number of articles by leaders in the filed covering from an historic perspective to potential therapeutic opportunities.

Keywords

Alzheimer --- Dopamine --- glia --- Epilepsy --- Exercise --- Stroke

Single Membrane Channels Formed by Connexins or Pannexins: Focus on the Nervous System

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198900 Year: Pages: 241 DOI: 10.3389/978-2-88919-890-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Given that the extremely elaborated and dynamic functions performed by the nervous system require the close synchronization of brain cells, complex organisms have developed different mechanisms of intercellular communication. At this regard, paracrine signaling between neighboring cells is currently recognized as one of the most widely distributed mechanisms of synchronization in the brain parenchyma. In mammals, paracrine signaling is in part mediated by single membrane channels formed by connexins (connexons/hemichannels) or pannexins (pannexons), which are two different membrane protein families composed of about 20 and 3 members, respectively. Single membrane channels formed by these proteins serve as aqueous pores permeable to ions and small molecules, allowing the diffusional exchange between the intra- and extracellular milieu. Thus, connexin hemichannels and pannexons permit the release of significant quantities of autocrine/paracrine signaling molecules (e.g., ATP, glutamate, NAD+, adenosine and PGE2) into the extracellular milieu, as well as the uptake of small molecules. An increasing body of evidence has revealed that connexin hemichannels and pannexons play a crucial role in a plethora of brain processes including blood flow regulation, Ca2+ wave propagation, memory consolidation, glucose sensing and cell migration and adhesion. Considering the multiple cell signaling functions of these channels, their dysregulation is proposed not only as potential pathological biomarker, but it has been implicated in the pathogenesis and progression of diverse brain diseases (e.g., meningitis, Alzheimer’s disease and stroke). The aim of this Research Topic is to gather a collection of original research articles, method, protocols, short communications, opinions, perspectives, as well as review articles, providing the latest progress and insights in the field of connexin hemichannels and pannexons in the nervous system. Within this volume we plan to cover from basic research including channel structure, regulation, pharmacology and trafficking; to different biological functions in the physiology (behavior, plasticity, neurogenesis, blood flow control, neuron-glia crosstalk, cell migration and differentiation) as well as in the pathophysiology (neuroinflammation, mutation-related diseases, glial dysfunction and neurodegeneration) of the nervous system. We hope that this collection of articles will serve to understand how the signaling of connexin hemichannels and pannexons influences both normal and pathological brain function.

Keywords

astrocyte --- Microglia --- Neuron --- Brain --- glia --- connexin --- pannexin --- hemichannel --- connexon --- pannexon

Neuronal Mechanics and Transport

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198238 Year: Pages: 212 DOI: 10.3389/978-2-88919-823-8 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Understanding the underlying mechanisms of how axons and dendrites develop is a fundamental problem in neuroscience and a main goal of research on nervous system development and regeneration. Previous studies have provided a tremendous amount of information on signaling and cytoskeletal proteins regulating axonal and dendritic growth and guidance. However, relatively little is known about the relative contribution and role of cytoskeletal dynamics, transport of organelles and cytoskeletal components, and force generation to axonal elongation. Advancing the knowledge of these biomechanical processes is critical to better understand the development of the nervous system, the pathological progression of neurodegenerative diseases, acute traumatic injury, and for designing novel approaches to promote neuronal regeneration following disease, stroke, or trauma. Mechanical properties and forces shape the development of the nervous system from the cellular up to the organ level. Recent advances in quantitative live cell imaging, biophysical, and nanotechnological methods such as traction force microscopy, optical tweezers, and atomic force microscopy have enabled researchers to gain better insights into how cytoskeletal dynamics and motor-driven transport, membrane-dynamics, adhesion, and substrate rigidity influence axonal elongation. Given the complexity and mechanical nature of this problem, mathematical modeling contributes significantly to our understanding of neuronal mechanics. Nonetheless, there has been limited direct interaction and discussions between experimentalists and theoreticians in this research area. The purpose of this Frontiers Research Topic is to highlight exciting and important work that is currently developing in the fields of neuronal cell biology, neuronal mechanics, intracellular transport, and mathematical modeling in the form of primary research articles, reviews, perspectives, and commentaries.

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

Frontiers Media SA (4)


License

CC by (4)


Language

english (4)


Year
From To Submit

2016 (4)