Search results:
Found 3
Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Microfluidics has developed rapidly over the past three decades. Relentless diagnostic, medical and chemical applications have been demonstrated in various applications, plateforms and tools. Have microfluidics realized its full potential? Or is it only a leveraging academic tool? In this Special Issue, we focus on both insights and advancements in microfluidics. We invite emerging investigators and pioneers to contribute commentaries, perspectives and insightful reviews on related topics. The various insights from esteemed colleagues will be collated. We will also discuss technological breakthrough of original works in both short communications and full papers. The main idea is to stimulate the community and to provide an unique collection of insightful papers. We will also cover various topics ranging from 3D printing, paper-based microfludics to conventional polymer-based microfluidics which contributes to the technological advancements.
Choose an application
Since the concept of micro total analysis systems (µ-TAS) has been advocated, various kinds of micro/nano devices have been developed by researchers in many fields, such as in chemistry, chemical engineering, mechanical engineering, electric engineering, biology, and medicine, among others. The analytical techniques for small sample volumes, using the micro/nano devices, heavily impacted the fields of biology, medicine and biotechnology, as well as analytical chemistry. Some applications (DNA analysis, point-of-care testing (POCT), etc.) are already commercially available, and various applications will soon be put into practical use.In this Special Issue, we focus on chemical and biochemical analyses (analytical and sensing techniques) using the various types of the micro/nano devices, including micro/nanofluidic devices, paper-based devices, digital microfluidics, and biochip (DNA, protein, cell) arrays. We are also interested in hyphenated devices with other conventional analytical instruments, and the pretreatment devices and components (valve, pump, etc.) for analysis/assay.
Choose an application
Microfabricated devices and systems capable of micromanipulation are well-suited for the manipulation of cells. These technologies are capable of a variety of functions, including cell trapping, cell sorting, cell culturing, and cell surgery, often at single-cell or sub-cellular resolution. These functionalities are achieved through a variety of mechanisms, including mechanical, electrical, magnetic, optical, and thermal forces. The operations that these microdevices and microsystems enable are relevant to many areas of biomedical research, including tissue engineering, cellular therapeutics, drug discovery, and diagnostics. This Special Issue will highlight recent advances in the field of cellular manipulation. Technologies capable of parallel single-cell manipulation are of special interest.
Listing 1 - 3 of 3 |
Sort by
|