Search results: Found 44

Listing 1 - 10 of 44 << page
of 5
>>
Sort by
Nanostructured Solar Cells

Authors: --- ---
ISBN: 9783038425328 9783038425335 Year: Pages: VIII, 178 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2017-10-25 13:23:42
License:

Loading...
Export citation

Choose an application

Abstract

This book covers major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs. Most recent studies of nanostructured solar cells have been integrated in this book, allowing readers to quickly follow recent developments in this area.

Brain-Computer Interfaces for Human Augmentation

Authors: --- ---
ISBN: 9783039219063 9783039219070 Year: Pages: 128 DOI: 10.3390/books978-3-03921-907-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Psychology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The field of Brain–Computer Interfaces (BCIs) has grown rapidly in the last few decades, allowing the development of faster and more reliable assistive technologies based on direct links between the brain and an external device. Novel applications of BCIs have also been proposed, especially in the area of human augmentation, i.e., enabling people to go beyond human limitations in sensory, cognitive and motor tasks. Brain-imaging techniques, such as electroencephalography, have been used to extract neural correlates of various brain processes and transform them, via machine learning, into commands for external devices. Brain stimulation technology has allowed to trigger the activation of specific brain areas to enhance the cognitive processes associated to the task at hand, hence improving performance. BCIs have therefore extended their scope from assistive technologies for people with disabilities to neuro-tools for human enhancement. This Special Issue aims at showing the recent advances in BCIs for human augmentation, highlighting new results on both traditional and novel applications. These include, but are not limited to, control of external devices, communication, cognitive enhancement, decision making and entertainment.

Pickering Emulsion and Derived Materials

Authors: ---
ISBN: 9783038423539 9783038423522 Year: Pages: Pages: VIII, 144 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2017-03-17 11:05:41
License:

Loading...
Export citation

Choose an application

Abstract

Particle-stabilized emulsions, today often referred to as Pickering/Ramsden emulsions, are vital in many fields, including personal care products, foods, pharmaceuticals, and oil recovery. The exploitation of these Pickering emulsions for the manufacture of new functional materials has also recently become the subject of intense investigation. While much progress has been made over the past decade, Pickering emulsion still remains a rich topic since many aspects of their behavior have yet to be investigated. The present “Pickering Emulsion and Derived Materials” Special Issue aims to bring together research and review papers pertaining to the recent developments in the design, fabrication, and application of Pickering emulsions. The themes include, but are not limited to:1. Interactions of colloidal particles confined at fluid interfaces2. Pickering emulsion-based polymerization3. Interfacial assembly and emulsion stabilization4. Rheology of particle laden interfaces and Pickering emulsions5. Functional materials templated from Pickering emulsions

Advances in Computer Simulation Studies on Crystal Growth

Author:
ISBN: 9783038973560 9783038973577 Year: Pages: 206 DOI: 10.3390/books978-3-03897-357-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2018-11-16 11:51:21
License:

Loading...
Export citation

Choose an application

Abstract

Crystals are indispensable in technology, nature, and our daily lives. For example, cooking uses many kinds of crystallized products, such as salt, sugar, and fat crystals; electronic devices contain semiconductor crystals; living organisms produce mineral crystals to maintain biological processes; and snow and ice crystals play a crucial role in climate change. For these and other topics related to crystals, an especially important area of research is crystal growth. Computer simulations of crystal growth have become increasingly important as a result of rapid increases in available computing power. Computer simulations can analyze and predict various aspects of crystal growth, including molecular-scale growth and nucleation mechanisms, the structure and dynamics of surfaces and interfaces, and pattern formation. This book presents state-of-the-art research and reviews of computer simulation studies on crystal growth for hard-sphere particles, organic molecules, ice, and functional materials. The studies use a variety of simulation methodologies, including molecular simulations, first-principles simulations, continuum simulations, and multiscale simulations. This book will interest graduate students and researchers in crystal growth science and technology and will provide a helpful reference for scientists who want to familiarize themselves with computer simulations of crystal growth.

Neural Microelectrodes: Design and Applications

Authors: ---
ISBN: 9783039213191 9783039213207 Year: Pages: 378 DOI: 10.3390/books978-3-03921-320-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Neural electrodes enable the recording and stimulation of bioelectrical activity in the nervous system. This technology provides neuroscientists with the means to probe the functionality of neural circuitry in both health and disease. In addition, neural electrodes can deliver therapeutic stimulation for the relief of debilitating symptoms associated with neurological disorders such as Parkinson’s disease and may serve as the basis for the restoration of sensory perception through peripheral nerve and brain regions after disease or injury. Lastly, microscale neural electrodes recording signals associated with volitional movement in paralyzed individuals can be decoded for controlling external devices and prosthetic limbs or driving the stimulation of paralyzed muscles for functional movements. In spite of the promise of neural electrodes for a range of applications, chronic performance remains a goal for long-term basic science studies, as well as clinical applications. New perspectives and opportunities from fields including tissue biomechanics, materials science, and biological mechanisms of inflammation and neurodegeneration are critical to advances in neural electrode technology. This Special Issue will address the state-of-the-art knowledge and emerging opportunities for the development and demonstration of advanced neural electrodes.

Keywords

neural interface --- silicon carbide --- robust microelectrode --- microelectrode array --- liquid crystal elastomer --- neuronal recordings --- neural interfacing --- micro-electromechanical systems (MEMS) technologies --- microelectromechanical systems --- neuroscientific research --- magnetic coupling --- freely-behaving --- microelectrodes --- in vivo electrophysiology --- neural interfaces --- enteric nervous system --- conscious recording --- electrode implantation --- intracranial electrodes --- foreign body reaction --- electrode degradation --- glial encapsulation --- electrode array --- microelectrodes --- neural recording --- silicon probe --- three-dimensional --- electroless plating --- intracortical implant --- microelectrodes --- stiffness --- immunohistochemistry --- immune response --- neural interface response --- neural interface --- micromachine --- neuroscience --- biocompatibility --- training --- education --- diversity --- bias --- BRAIN Initiative --- multi-disciplinary --- micro-electromechanical systems (MEMS) --- n/a --- silicon neural probes --- LED chip --- thermoresistance --- temperature monitoring --- optogenetics --- microfluidic device --- chronic implantation --- gene modification --- neural recording --- neural amplifier --- microelectrode array --- intracortical --- sensor interface --- windowed integration sampling --- mixed-signal feedback --- multiplexing --- amorphous silicon carbide --- neural stimulation and recording --- insertion force --- microelectrodes --- neural interfaces --- intracortical --- microelectrodes --- shape-memory-polymer --- electrophysiology --- electrode --- artifact --- electrophysiology --- electrochemistry --- fast-scan cyclic voltammetry (FSCV) --- neurotechnology --- neural interface --- neuromodulation --- neuroprosthetics --- brain-machine interfaces --- intracortical implant --- microelectrodes --- softening --- immunohistochemistry --- immune response --- neural interface --- shape memory polymer --- deep brain stimulation --- fast scan cyclic voltammetry --- dopamine --- glassy carbon electrode --- magnetic resonance imaging --- system-on-chip --- neuromodulation --- bidirectional --- closed-loop --- sciatic nerve --- vagus nerve --- precision medicine --- neural probe --- intracortical --- microelectrodes --- bio-inspired --- polymer nanocomposite --- cellulose nanocrystals --- photolithography --- Parylene C --- impedance --- Utah electrode arrays --- electrode–tissue interface --- peripheral nerves --- wireless --- implantable --- microstimulators --- neuromodulation --- peripheral nerve stimulation --- neural prostheses --- microelectrode --- neural interfaces --- dextran --- neural probe --- microfabrication --- foreign body reaction --- immunohistochemistry --- polymer --- chronic --- electrocorticography --- ECoG --- micro-electrocorticography --- µECoG --- neural electrode array --- neural interfaces --- electrophysiology --- brain–computer interface --- in vivo imaging --- tissue response --- graphene --- n/a

Modeling and Experimental Characterization of Nanocomposite Materials

Author:
ISBN: 9783039286324 / 9783039286331 Year: Pages: 130 DOI: 10.3390/books978-3-03928-633-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue gathers research from different branches of science and engineering disciplines working on experiments and modelling of nanocomposites into one volume. The Guest Editor welcomes papers dedicated to experimental, computational, and theoretical aspects dealing with many important state-of-the-art technologies and methodologies regarding the synthesis, fabrication, characterization, properties, design, and applications, and both finite element analysis and molecular dynamic simulations, of nanocomposite materials and structures. Full papers covering novel topics, extending the frontiers of the science and technology of nanoreinforced composites are encouraged. Reviews covering topics of major interest will be also considered.

Mineral Surface Reactions at the Nanoscale

Author:
ISBN: 9783038978961 9783038978978 Year: Pages: 220 DOI: 10.3390/books978-3-03897-897-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geology --- Earth Sciences
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of the rocks and hence the structure of the crust of the Earth during processes such as metamorphism, metasomatism, and weathering. In recent years focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical methods such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, and advanced synchrotron-based applications, to enable mineral surfaces to be imaged and analyzed at the nanoscale. Experiments are increasingly complemented by molecular simulations to confirm or predict the results of these studies. This has enabled new and exciting possibilities to elucidate the mechanisms that govern mineral–fluid reactions. In this Special Issue, “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research.

Development of CMOS-MEMS/NEMS Devices

Authors: ---
ISBN: 9783039210688 9783039210695 Year: Pages: 165 DOI: 10.3390/books978-3-03921-069-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Micro and nano-electro-mechanical system (M/NEMS) devices constitute key technological building blocks to enable increased additional functionalities within Integrated Circuits (ICs) in the More-Than-Moore era, as described in the International Technology Roadmap for Semiconductors. The CMOS ICs and M/NEMS dies can be combined in the same package (SiP), or integrated within a single chip (SoC). In the SoC approach the M/NEMS devices are monolithically integrated together with CMOS circuitry allowing the development of compact and low-cost CMOS-M/NEMS devices for multiple applications (physical sensors, chemical sensors, biosensors, actuators, energy actuators, filters, mechanical relays, and others). On-chip CMOS electronics integration can overcome limitations related to the extremely low-level signals in sub-micrometer and nanometer scale electromechanical transducers enabling novel breakthrough applications. This Special Issue aims to gather high quality research contributions dealing with MEMS and NEMS devices monolithically integrated with CMOS, independently of the final application and fabrication approach adopted (MEMS-first, interleaved MEMS, MEMS-last or others).]

Nanoparticle-Reinforced Polymers

Author:
ISBN: 9783039212835 9783039212842 Year: Pages: 334 DOI: 10.3390/books978-3-03921-284-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications.

Keywords

chemical and physical interface --- surface modification of silica --- latex compounding method --- silica/NR composite --- thermoresponsive hyperbranched polymer --- gold nanoparticles --- in-situ synthesis --- colorimetric sensor --- silver ions --- Ag nanoparticles --- catalysis --- composite membrane --- separation --- SiO2 microspheres --- inorganic nanotubes --- PHBV --- nanomaterials --- morphology --- crystallization kinetics --- nanocomposite --- conductive polymer --- solar cell --- graphene --- graphene oxide --- power-conversion efficiency --- electrode --- active layer --- interfacial layer --- layered structures --- polymer-matrix composites --- mechanical properties --- gas barrier properties --- N-isopropylacrylamide --- N-isopropylmethacrylamide --- ratiometric temperature sensing --- FRET --- chain topology --- selective adsorption --- polymer-NP interface --- organic light-emitting diodes (OLEDs) --- PFO/MEH-PPV hybrids --- SiO2/TiO2 nanocomposite --- optoelectronic properties --- fluorescent assay --- fluorescence resonance energy transfer --- conjugated polymer nanoparticles --- gold nanoparticles --- melamine --- polymers --- composites --- carbon nanoparticles --- nano-hybrids --- nanocomposites --- sol–gel --- in situ synthesis --- metal oxides --- reduced graphene oxide --- graphene-like WS2 --- bismaleimide --- mechanical properties --- carrier transport --- polypropylene nanocomposite --- molecular chain motion --- electrical breakdown --- electric energy storage --- thermoplastic nanocomposite --- polyethylene --- power cable insulation --- electrical property --- structure-property relationship --- hybrid hydrogels --- nanoparticles --- nanosheets --- clays --- polymers --- adhesion --- n/a

Groundwater Resources and Salt Water Intrusion in a Changing Environment

Authors: ---
ISBN: 9783039211975 9783039211982 Year: Pages: 176 DOI: 10.3390/books978-3-03921-198-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue presents the work of 30 scientists from 11 countries. It confirms that the impacts of global change, resulting from both climate change and increasing anthropogenic pressure, are huge on worldwide coastal areas (and critically so on some islands in the Pacific Ocean), with highly negative effects on coastal groundwater resources, which are widely affected by seawater intrusion. Some improved research methods are proposed in the contributions: using innovative hydrogeological, geophysical, and geochemical monitoring; assessing impacts of the changing environment on the coastal groundwater resources in terms of quantity and quality; and using modelling, especially to improve management approaches. The scientific research needed to face these challenges must continue to be deployed by different approaches based on the monitoring, modelling and management of groundwater resources. Novel and more efficient methods must be developed to keep up with the accelerating pace of global change.

Listing 1 - 10 of 44 << page
of 5
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (44)


License

CC by-nc-nd (44)


Language

english (37)

eng (7)


Year
From To Submit

2020 (11)

2019 (30)

2018 (1)

2017 (2)