Search results: Found 3

Listing 1 - 3 of 3
Sort by
Frontiers in the Pharmacological Manipulation of Intracellular cAMP Levels

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198153 Year: Pages: 191 DOI: 10.3389/978-2-88919-815-3 Language: English
Publisher: Frontiers Media SA
Subject: Therapeutics --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Cyclic adenosine monophosphate (cAMP) is a second messenger of paramount biological importance, involved in the regulation of a significant number of cellular functions through the cAMP-dependent intracellular signal transduction pathways. The aim of this "Frontiers in Pharmacology" Research Topic was to attract contributions that highlight emerging ideas in the cAMP field that: (i) describe its role in cellular function and homeostasis, (ii) present the current approaches to its pharmacological manipulation, and (iii) clarify its central role in the development of more targeted therapeutic approaches toward a spectrum of diseases. The present collection of articles highlights, in a representative (but certainly not exhaustive) way, the research activity and emerging concepts in the field, while it also reveals the therapeutic potential that targeted pharmacological manipulation of intracellular cAMP levels could exert on a number of pathological conditions.

Microbial Exopolysaccharides: From Genes to Applications

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198436 Year: Pages: 161 DOI: 10.3389/978-2-88919-843-6 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Microbial polysaccharides represent an attractive alternative to those from plants or macro algae. They can be produced from renewable sources including lignocellulosic waste streams. Their production does not depend on geographical constraints and/or seasonal limitations. Additionally the manipulation of biosynthetic pathways to enhance productivity or to influence the chemi-cal polysaccharide composition is comparatively easy in bacteria. Microbial exopolysaccharides represents a valuable resource of biogenic and biodegradable polymers, suitable to replace petro based polymers in various technical applications. Furthermore, biocompatible exopolysaccha-rides are very attractive in medical applications, such as drug delivery systems, use as vaccines or nanoparticles. This research topic will depict the status quo, as well as the future needs in the field of EPS and biofilm research. Starting from the unexplored diversity of microbial polysaccharide producers to production processes and possibilities for modifications, to enhance the already high number of functionalities based on the chemical structures. An overview of the recent and future applications will be given, and the necessity in unravelling the biosynthesis of microbial exopolysaccharide producers is depicted, highlighting the future trend of tailor made polymers. Constraints in structure analysis of these highly complex biogenic polymers are described and different approaches to solve the restrictions in imaging and NMR analysis will be given. Therefore; this research topic comprises the whole process from genes to applications.

Branching and Rooting Out with a CT Scanner: The Why, the How, and the Outcomes, Present and Possibly Future

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197910 Year: Pages: 91 DOI: 10.3389/978-2-88919-791-0 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2017-02-03 17:04:57
License:

Loading...
Export citation

Choose an application

Abstract

Until recently, a majority of the applications of X-ray computed tomography (CT) scanning in plant sciences remained descriptive; some included a quantification of the plant materials when the root-soil isolation or branch-leaf separation was satisfactory; and a few involved the modeling of plant biology processes or the assessment of treatment or disease effects on plant biomass and structures during growth. In the last decade, repeated CT scanning of the same plants was reported in an increasing number of studies in which moderate doses of X-rays had been used. Besides the general objectives of Frontiers in Plant Science research topics, “Branching and Rooting Out with a CT Scanner” was proposed to meet specific objectives: (i) providing a non-technical update on knowledge about the application of CT scanning technology to plants, starting with the type of CT scanning data collected (CT images vs. CT numbers) and their processing in the graphical and numerical approaches; (ii) drawing the limits of the CT scanning approach, which because it is based on material density can distinguish materials with contrasting or moderately overlapping densities (e.g., branches vs. leaves, roots vs. non-organic soils) but not the others (e.g., roots vs. organic soils); (iii) explaining with a sufficient level of detail the main procedures used for graphical, quantitative and statistical analyses of plant CT scanning data, including fractal complexity measures and statistics appropriate for repeated plant CT scanning, in experiments where the research hypotheses are about biological processes such as light interception by canopies, root disease development and plant growth under stress conditions; (iv) comparing plant CT scanning with an alternative technology that applies to plants, such as the phenomics platforms which target leaf canopies; and (v) providing current and potential users of plant CT scanning with up-to-date information and exhaustive documentation, including clear perspectives and well-defined goals for the future, for them to be even more efficient or most efficient from start in their research work.

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

Frontiers Media SA (3)


License

CC by (3)


Language

english (3)


Year
From To Submit

2016 (3)