Search results: Found 6

Listing 1 - 6 of 6
Sort by
Dynamics of Joint-Action, Social Coordination and Multi-Agent Activity

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454204 Year: Pages: 379 DOI: 10.3389/978-2-88945-420-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Psychology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Coordinating one’s behavior with the behavior of other individuals is a fundamental feature of everyday social interaction. A defining feature of such behavior is that it is dynamic, that is, it evolves over time. This is true whether one considers the linguistic, gestural and non-verbal coordination that occurs between two or more individuals engaged in a conversation or the physical movement coordination that occurs when two or more people clear a dinner table or load a dishwasher together. Such behavior is also emergent and robust to sudden changes in task context or unexpected environmental or social perturbations. Accordingly, robust social action and multi-agent coordination is synergistic, with co-acting individuals adapting to each other and the environment around them in a mutual and reciprocal manner. Research investigating the behavioral dynamics of joint-action and multi-agent coordination has steadily increased over the last several decades. Spurred by several factors, including (i) the increased accessibility of technologies for recording and extracting the time-evolution of multi-agent behavior (e.g., motion tracking, eye-tracking, EEG), (ii) the development of new nonlinear techniques for analyzing behavioral and linguistic time-series data, and (iii) a growing appreciation that social cognition, perception, and action are interdependent, embodied and embedded processes, this research has not only been directed towards measuring and identifying the stable patterns of coordinated social and multi-agent activity that emerge over time, but also how these stable pattern are activated, dissolved, transformed, and exchanged over time. Not surprisingly, researchers have begun to investigate the implications of this behavioral dynamics perspective for understanding social cognitive processes as well as clinical disorders with social deficits such as autism and schizophrenia. Attempts at modeling the dynamics of social action and multi-agent behavior using various nonlinear and complex systems methods has also increased over the last several years, with many researchers demonstrating how simple low-dimensional dynamical or computational models can be employed to capture and explain the dynamics of ongoing joint-action and multi-agent behavior. A characteristic feature of these dynamical models is that they reveal how stable social action and multi-agent coordination arises naturally from the interaction of the physical, biomechanical, neural, informational, and social cognitive properties of a joint-action task context and goal, and cannot be ascribed to any one singular processes, agent, or level of analysis. The implications of these modeling endeavors for the design of robust and adaptive human-machine systems and robotic agents has not gone unnoticed, with a growing body of work now devoted to such joint-action, (bio)-inspired human-robotic interaction initiatives.

Sub- and Supra-Second Timing: Brain, Learning and Development

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198986 Year: Pages: 162 DOI: 10.3389/978-2-88919-898-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Psychology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Time perception in the range of milliseconds to a few seconds is essential for many important sensory and perceptual tasks including speech perception, motion perception, motor coordination, and cross-modal interaction. For the brain to be in synchrony with the environment, the physical differences in the speeds of light and sound, as well as stimuli from other modalities such as odors, must be processed and coordinated (Pöppel & Bao 2014; Bao et al., 2015). Time is a subjective feeling that is modulated by emotional states which trigger temporal distortions (temporal dilation vs. contraction) (Wittmann et al., 2014), hence give rise to subjective time that may be different to event time as initially registered in the brain. Recent research suggests that time perception in a multisensory world is subject to prior task experience and shaped by (statistical) learning processes. Humans are active learners. That is, the engagement of the own body in a timing task within a perceptual-action loop will make a noticeable difference in timing performance, as compared to when humans only passively perceive the same perceptual scenario (Bao et al., 2015; Chen & Vroomen, 2013). This Research Topic of “Sub-and Supra-Second Timing: Brain, Learning and Development” has integrated sixteen submissions of novel research on sub- and supra-timing. We have categorized the papers in this topic into the following four themes, from which we can deduce trends of research about multisensory timing in the sub- and supra-second range:Sensory timing, interaction and reliabilityAdaptive representation of time, learning and temporal predictionSensorimotor synchronization, embodiment and coordinationPerspective of psychological moment and temporal organizationOverall, the collections in “Sub-and Supra-Second Timing: Brain, Learning and Development” show some recent trends and debates in multisensory timing research as well as provide a venue to inspire future work in multisensory timing.

Neurovision: Neural bases of binocular vision and coordination and their implications in visual training programs

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196555 Year: Pages: 264 DOI: 10.3389/978-2-88919-655-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

Binocular vision is achieved by five neurovisual systems originating in the retina but varying in their destination within the brain. Two systems have been widely studied: the retino-tectal or retino-collicular route, which subserves an expedient and raw estimate of the visual scene through the magnocellular pathway, and the retino-occipital or retino-cortical route, which allows slower but refined analysis of the visual scene through the parvocellular pathway. But there also exist further neurovisual systems: the retino-hypothalamic, retino-pretectal, and accessory optic systems, which play a crucial role in vision though they are less understood. The retino-pretectal pathway projecting onto the pretectum is critical for the pupillary or photomotor reflex. The retino-hypothalamic pathway projecting onto the suprachiasmatic nucleus regulates numerous behavioral and biological functions as well as circadian rhythms. The accessory optic system targeting terminal lateral, medial and dorsal nuclei through the paraoptic fasciculus plays a role in head and gaze orientation as well as slow movements. Taken together, these neurovisual systems involve 60% of brain activity, thus highlighting the importance of vision in the functioning and regulation of the central nervous system. But vision is first and foremost action, which makes perception impossible without movement. Binocular coordination is a prerequisite for binocular fusion of the object of interest on the two foveas, thus ensuring visual perception. The retino-collicular pathway is sufficient to elicit reflexive eye movements with short latencies. Thanks to its motor neurons, the superior colliculus activates premotor neurons, which themselves activate motor neurons of the oculomotor, trochlear and abducens nuclei. At a higher level, a cascade of neural mechanisms participates in the control of decisional eye movements. The superior colliculus is controlled by the substancia nigra pars reticulata, which is itself gated by subcortical structures such as the dorsal striatum. The superior colliculus is also inhibited by the dorsolateral prefrontal cortex through a direct prefrontotectal tract. Cortical areas are crucial for the triggering of eye movements: the frontal eye field, supplementary eye field, and parietal eye field. Finally the cerebellum maintains accuracy. The focus of the present research topic, entitled Neural bases of binocular vision and coordination and their implications in visual training programs, is to review the most recent findings in brain imaging and neurophysiology of binocular vision and coordination in humans and animals with frontally-placed eyes. The emphasis is put on studies that enable transfer of knowledge toward visual training programs targeting visual field defects (e.g., hemianopia) and binocular functional disorders (e.g., amblyopia).

Perceiving and Acting in the Real World: From Neural Activity to Behavior

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450282 Year: Pages: 280 DOI: 10.3389/978-2-88945-028-2 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

One remarkable ability of the human brain is to process large amounts of information about our surroundings to allow us to interact effectively with them. In everyday life, the most common way to interact with objects is by reaching, grasping, lifting and manipulating them. Although these may sound like simple tasks, the perceptual properties of the target object, such as its location, size, shape, and orientation all need to be processed in order to set the movement parameters that allow an accurate reach-to-grasp-to lift movement. Several brain areas work in concert to process this outstanding amount of visual information and drive the execution of a motor plan in just a few hundred milliseconds. How are these processes orchestrated? In developing this type of comprehensive knowledge about the interactions between objects perception and goal-directed actions, we have a window into the mechanisms underlying the functioning of the visuo-motor system. With this research topic we aim to further understand the neural mechanisms that mediate our interactions with the world. Therefore, we particularly encourage submission of papers that attempt to relate such findings to real-world situations by investigating behavioural and neural correlates of information processing related to eye-hand coordination and visually-guided actions, including reaching, grasping, and lifting movements. This topic welcomes submissions of original research using any relevant techniques and methods, from behavioural kinematics/kinetics, to neuroimaging and transcranial magnetic stimulation (TMS), as well as neuropsychological studies.One remarkable ability of the human brain is to process large amounts of information about our surroundings to allow us to interact effectively with them. In everyday life, the most common way to interact with objects is by reaching, grasping, lifting and manipulating them. Although these may sound like simple tasks, the perceptual properties of the target object, such as its location, size, shape, and orientation all need to be processed in order to set the movement parameters that allow an accurate reach-to-grasp-to lift movement. Several brain areas work in concert to process this outstanding amount of visual information and drive the execution of a motor plan in just a few hundred milliseconds. How are these processes orchestrated? In developing this type of comprehensive knowledge about the interactions between objects perception and goal-directed actions, we have a window into the mechanisms underlying the functioning of the visuo-motor system. With this research topic we aim to further understand the neural mechanisms that mediate our interactions with the world. Therefore, we particularly encourage submission of papers that attempt to relate such findings to real-world situations by investigating behavioural and neural correlates of information processing related to eye-hand coordination and visually-guided actions, including reaching, grasping, and lifting movements. This topic welcomes submissions of original research using any relevant techniques and methods, from behavioural kinematics/kinetics, to neuroimaging and transcranial magnetic stimulation (TMS), as well as neuropsychological studies.

Neural Computation in Embodied Closed-Loop Systems for the Generation of Complex Behavior: From Biology to Technology

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456055 Year: Pages: 278 DOI: 10.3389/978-2-88945-605-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

How can neural and morphological computations be effectively combined and realized in embodied closed-loop systems (e.g., robots) such that they can become more like living creatures in their level of performance? Understanding this will lead to new technologies and a variety of applications.To tackle this research question, here, we bring together experts from different fields (including Biology, Computational Neuroscience, Robotics, and Artificial Intelligence) to share their recent findings and ideas and to update our research community. This eBook collects 17 cutting edge research articles, covering neural and morphological computations as well as the transfer of results to real world applications, like prosthesis and orthosis control and neuromorphic hardware implementation.

The Chemistry of Imaging Probes

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455980 Year: Pages: 129 DOI: 10.3389/978-2-88945-598-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Over the past decades, the field of molecular imaging has been rapidly growing involving multiple disciplines such as medicine, biology, chemistry, pharmacology and biomedical engineering. Any molecular imaging procedure requires an imaging probe that is an agent used to visualize, characterize and quantify biological processes in living systems. Such a probe typically consists of an agent that usually produces signal for imaging purpose, a targeting moiety, and a linker connecting the targeting moiety and the signaling agent.Many challenging problems of molecular imaging can be addressed by exploiting the great possibilities offered by modern synthetic organic and coordination chemistry and the powerful procedures provided by conjugation chemistry. Thus, chemistry plays a decisive role in the development of this cutting-edge methodology.Currently, the diagnostic imaging modalities include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Ultrasound (US), Nuclear Imaging (PET, SPECT), Optical Imaging (OI) and Photoacoustic Imaging (PAI). Each of these imaging modalities has its own advantages and disadvantages, and therefore, a multimodal approach combining two techniques is often adopted to generate complementary anatomical and functional information of the disease. The basis for designing imaging probes for a given application is dictated by the chosen imaging modality, which in turn is dependent upon the concentration and localization profile (vascular, extracellular matrix, cell membrane, intracellular, near or at the cell nucleus) of the target molecule. The development of high-affinity ligands and their conjugation to the targeting vector is also one of the key steps for pursuing efficient molecular imaging probes. Other excellent reviews, text and monographs describe the principles of biomedical imaging, focusing on molecular biology or on the physics behind the techniques. This Research Topic aims to show how chemistry can offer molecular imaging the opportunity to express all its potential.

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

Frontiers Media SA (6)


License

CC by (6)


Language

english (6)


Year
From To Submit

2018 (3)

2016 (2)

2015 (1)