Search results: Found 18

Listing 1 - 10 of 18 << page
of 2
>>
Sort by
Climate change and marine top predators

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197361 Year: Pages: 178 DOI: 10.3389/978-2-88919-736-1 Language: English
Publisher: Frontiers Media SA
Subject: Ecology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Climate change affects all components of marine ecosystems. For endothermic top predators, i.e. seabirds and marine mammals, these impacts are often complex and mediated through trophic relationships. In this Research Topic, leading researchers attempt to identify patterns of change among seabirds and marine mammals, and the mechanisms through which climate change drives these changes.

The Microbial Regulation of Global Biogeochemical Cycles

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192977 Year: Pages: 241 DOI: 10.3389/978-2-88919-297-7 Language: English
Publisher: Frontiers Media SA
Subject: Geography --- Microbiology --- Science (General)
Added to DOAB on : 2015-12-10 11:59:07
License:

Loading...
Export citation

Choose an application

Abstract

Global biogeochemical cycles of carbon and nutrients are increasingly affected by human activities. So far, modeling has been central for our understanding of how this will affect ecosystem functioning and the biogeochemical cycling of carbon and nutrients. These models have been forced to adopt a reductive approach built on the flow of carbon and nutrients between pools that are difficult or even impossible to verify with empirical evidence. Furthermore, while some of these models include the response in physiology, ecology and biogeography of primary producers to environmental change, the microbial part of the ecosystem is generally poorly represented or lacking altogether. The principal pool of carbon and nutrients in soil is the organic matter. The turnover of this reservoir is governed by microorganisms that act as catalytic converters of environmental conditions into biogeochemical cycling of carbon and nutrients. The dependency of this conversion activity on individual environmental conditions such as pH, moisture and temperature has been frequently studied. On the contrary, only rarely have the microorganisms involved in carrying out the processes been identified, and one of the biggest challenges for advancing our understanding of biogeochemical processes is to identify the microorganisms carrying out a specific set of metabolic processes and how they partition their carbon and nutrient use. We also need to identify the factors governing these activities and if they result in feedback mechanisms that alter the growth, activity and interaction between primary producers and microorganisms. By determining how different groups of microorganisms respond to individual environmental conditions by allocating carbon and nutrients to production of biomass, CO2 and other products, a mechanistic as well as quantitative understanding of formation and decomposition of organic matter, and the production and consumption of greenhouse gases, can be achieved. In this Research Topic, supported by the Swedish research councils' programme "Biodiversity and Ecosystem Services in a Changing Landscape" (BECC), we intend to promote this alternative framework to address how cycling of carbon and nutrients will be altered in a changing environment from the first-principle mechanisms that drive them – namely the ecology, physiology and biogeography of microorganisms – and on up to emerging global biogeochemical patterns. This novel and unconventional approach has the potential to generate fresh insights that can open up new horizons and stimulate rapid conceptual development in our basic understanding of the regulating factors for global biogeochemical cycles. The vision for the research topic is to facilitate such progress by bringing together leading scientists as proponents of several disciplines. By bridging Microbial Ecology and Biogeochemistry, connecting microbial activities at the micro-scale to carbon fluxes at the ecosystem-scale, and linking above- and belowground ecosystem functioning, we can leap forward from the current understanding of the global biogeochemical cycles.

Nature and Environment: The Psychology of Its Benefits and Its Protection

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198504 Year: Pages: 136 DOI: 10.3389/978-2-88919-850-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Psychology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Our Research Topic section entitled: "Nature and the environment: The psychology of its benefits and its protection" will have two main lines. The first line of articles will center upon cutting-edge research showing how interacting with nature, can affect health, well-being, and overall improve cognition and affect. Articles in this line will stress in what ways nature can improve psychological functioning and health and also discuss the theories and evidence as to why nature can improve psychological functioning. For this line, we welcome submission of articles that discuss the psychological, health and well-being benefits from interacting with nature as well as submissions that focus on theoretical considerations and underlying mechanisms that lead to the restorative effects of interacting with nature. Given that nature can have a positive impact on psychological functioning and overall health, it is also important to understand the variables that facilitate people’s recognition of environmental issues that can help foster a more positive attitude towards the preservation of nature. This brings us to the second line of articles which will center upon the psychological mechanisms that make individuals more or less likely to accept the seriousness of environmental challenges such as climate change. Given the new cutting-edge research in this field we may be able to make individuals more proactive in the protection of the environment and more accepting of policy measures required to mitigate climate change. We see this research topic as a way for psychological scientists to contribute substantially to an important area of public debate and policy. For this line we welcome articles that will focus on ways in which people respond to various framings of policy relevant information and how morality may play into the individuals policy views that center on climate change and environmental protection.

Anthropogenic Impacts on the Microbial Ecology and Function of Aquatic Environments

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199396 Year: Pages: 248 DOI: 10.3389/978-2-88919-939-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Aquatic ecosystems are currently experiencing unprecedented levels of impact from human activities including over-exploitation of resources, habitat destruction, pollution and the influence of climate change. The impacts of these activities on the microbial ecology of aquatic environments are only now beginning to be defined. One of the many implications of environmental degradation and climate change is the geographical expansion of disease- causing microbes such as those from the Vibrio genus. Elevating sea surface temperatures correlate with increasing Vibrio numbers and disease in marine animals (e.g. corals) and humans. Contamination of aquatic environments with heavy metals and other pollutants affects microbial ecology with downstream effects on biogeochemical cycles and nutrient turnover. Also of importance is the pollution of aquatic environments with antibiotics, resistance genes and the mobile genetic elements that house resistance genes from human and animal waste. Such contaminated environments act as a source of resistance genes long after an antibiotic has ceased being used in the community. Environments contaminated with mobile genetic elements that are adapted to human commensals and pathogens function to capture new resistance genes for potential reintroduction back into clinical environments. This research topic encompasses these diverse topics and describes the affect(s) of human activity on the microbial ecology and function in aquatic environments and, describes methods of restoration and for modelling disturbances.

Crop Traits for Defense against Pests and Disease: Durability, Breakdown and Future Prospects

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451562 Year: Pages: 262 DOI: 10.3389/978-2-88945-156-2 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2017-08-28 14:01:09
License:

Loading...
Export citation

Choose an application

Abstract

With global populations expected to exceed 9.2 billion by 2050 and available land and water resources devoted to crop production dwindling, we face significant challenges to secure global food security. Only 12 plant species feed 80% of the world’s population, with just three crop species (wheat, rice and maize) accounting for food consumed by 50% of the global population. Annual losses to crop pests and pathogens are significant, thought to be equivalent to that required to feed a billion people, at a time when crop productivity has plateaued. With pesticide applications becoming increasingly unfeasible on cost, efficacy and environmental grounds, there is growing interest in exploiting plant resistance and tolerance traits for crop protection. Indeed, mankind has been selectively breeding plants for desirable traits for thousands of years. However, resistance and tolerance traits have not always been those most desired, and in many cases have been inadvertently lost during the domestication process: crops have been effectively ‘disarmed by domestication’. Moreover, mechanistic understanding of how resistance and tolerance traits operate is often incomplete, which makes identifying the right combination for crop protection difficult. We aimed to address this Research Topic by inviting authors to contribute their knowledge of appropriate resistance and tolerance traits, explore what is known about durability and breakdown of defensive traits and, finally, asking what are the prospects for exploiting these traits for crop protection. The research topic summarised in this book addresses some of the most important issues in the future sustainability of global crop production.

Abiotic Stresses in Agroecology: A Challenge for Whole Plant Physiology

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452040 Year: Pages: 177 DOI: 10.3389/978-2-88945-204-0 Language: English
Publisher: Frontiers Media SA
Subject: Environmental Sciences --- Botany --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

Understanding plant responses to abiotic stresses is central to our ability to predict the impact of global change and environmental pollution on the production of food, feed and forestry. Besides increasing carbon dioxide concentration and rising global temperature, increasingly frequent and severe climatic events (e.g. extended droughts, heat waves, flooding) are expected in the coming decades. Additionally, pollution (e.g. heavy metals, gaseous pollutants such as ozone or sulfur dioxide) is an important factor in many regions, decreasing plant productivity and product quality. This Research topic focuses on stress responses at the level of whole plants, addressing biomass-related processes (development of the root system, root respiration/fermentation, leaf expansion, stomatal regulation, photosynthetic capacity, leaf senescence, yield) and interactions between organs (transport via xylem and phloem, long-distance signaling and secondary metabolites). Comparisons between species and between varieties of the same species are helpful to evaluate the potential for species selection and genetic improvement. This research topic is focused on the following abiotic stresses and interactions between them:- Increased carbon dioxide concentration in ambient air is an important parameter influenced by global change and affects photosynthesis, stomatal regulation, plant growth and finally yield.- Elevated temperature: both the steady rise in average temperature and extreme events of shorter duration (heat waves) must be considered in the context of alterations in carbon balance through increased photorespiration, decreased Rubisco activation and carboxylation efficiency, damage to photosynthetic apparatus, as well as loss of water via transpiration and stomatal sensitivity. - Low temperatures (late frosts, prolonged cold phases, freezing temperature) can decrease overwintering survival rates, productivity of crop plants and species composition in meadows.- Water availability: More frequent, severe and extended drought periods have been predicted by climate change models. The timing and duration of a drought period is crucial to determining plant responses, particularly if the drought event coincides with an increase in temperature. Drought causes stomatal closure, decreasing the cooling potential of transpiration and potentially leading to thermal stress as leaf temperature rises. Waterlogging may become also more relevant during the next decades and is especially important for seedlings and young plants. It is not the presence of water itself that causes the stress, but the exclusion of oxygen from the soil which causes a decrease in respiration and an increase in fermentation rates followed by a period of potential oxidative stress as water recedes.- Salinity: high salt concentration in soil influences soil water potential, the water status of the plant and hence affects productivity. Salt tolerance will become an important trait driven by increased competition for land and the need to exploit marginal lands.

Plant Competition in a Changing World

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452057 Year: Pages: 154 DOI: 10.3389/978-2-88945-205-7 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

Competitiveness describes a key ability important for plants to grow and survive abiotic and biotic stresses. Under optimal, but particularly under non-optimal conditions, plants compete for resources including nutrients, light, water, space, pollinators and other. Competition occurs above- and belowground. In resource-poor habitats, competition is generally considered to be more pronounced than in resource-rich habitats. Although competition occurs between different players within an ecosystem such as between plants and soil microorganisms, our topic focusses on plant-plant interactions and includes inter-specific competition between different species of similar and different life forms and intra-specific competition.Strategies for securing resources via spatial or temporal separation and different resource needs generally reduce competition. Increasingly important is the effect of invasive plants and subsequent decline in biodiversity and ecosystem function. Current knowledge and future climate predictions suggest that in some situations competition will be intensified with occurrence of increased abiotic (e.g. water and nutrient limitations) and biotic stresses (e.g. mass outbreak of insects), but competition might also decrease in situations where plant productivity and survival declines (e.g. habitats with degraded soils).Changing interactions, climate change and biological invasions place new challenges on ecosystems. Understanding processes and mechanisms that underlie the interactions between plants and environmental factors will aid predictions and intervention. There is much need to develop strategies to secure ecosystem services via primary productivity and to prevent the continued loss of biodiversity.This Research Topic provides an up-to-date account of knowledge on plant-plant interactions with a focus on identifying the mechanisms underpinning competitive ability. The Research Topic aims to showcase knowledge that links ecological relevance with physiological processes to better understanding plant and ecosystem function.

Grassland-Invertebrate Interactions: Plant Productivity; Resilience and Community Dynamics

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452903 Year: Pages: 254 DOI: 10.3389/978-2-88945-290-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany --- Ecology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Natural and anthropogenic grasslands such as prairies, meadows, rangelands, and pastures cover more than 40% of the planet’s surface and provide a wealth of ecological services. Grasslands alone store one third of the global carbon stocks and grass roots, through their specific architectures, ensure water cycling and prevent the erosion of fertile topsoil. In addition, grasslands are of vital importance for human food production as vast areas of rangelands and pastures provide feed for livestock. Pastoral legumes mobilize atmospheric nitrogen and improve fertility of arable soils. Not least, grasslands are an essential genetic resource. The three major crop species that feed half of the global population have been bred from wild grasses. Ancestors of our contemporary turf cultivars, common components of urban landscapes and recreation spaces, originated from wild grasslands. Although natural and managed grasslands represent pivotal ecosystems, many aspects of how they function are poorly understood. To date, most attention has focused on grassland primary producers (i.e. forage plants) and mammalian grazers but invertebrates are likely to play an equally, if not more important role in grassland ecosystem functioning. In Australian pastures, for example, the biomass of root-feeding scarab beetles can often exceed that of sheep and plant damage caused by invertebrates is sometimes equivalent to an average dairy cow’s grass consumption. Indeed, grasslands are one of the most densely populated ecosystems with invertebrates being probably the most important engineers that shape both plant communities and the grassland as a whole. In a rapidly changing world with increasing anthropogenic pressure on grasslands, this Research Topic focuses on: 1. How grassland habitats shape invertebrate biodiversity2. Impacts of climate change on grassland-invertebrate interactions3. Plant and invertebrate pest monitoring and management4. Plant-mediated multitrophic interactions and biological control in grasslands5. Land use and grassland invertebrates6. Plant resistance to invertebrate pests Given the increasing demand for food and land for human habitation, unprecedented threats to grasslands are anticipated. Resilient to some extent, these key ecosystems need to be better comprehended to guarantee their sustainable management and ecosystem services.

Modeling the Plankton - Enhancing the Integration of Biological Knowledge and Mechanistic Understanding

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453658 Year: Pages: 228 DOI: 10.3389/978-2-88945-365-8 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Oceanography
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

In light of climate change and allied changes to marine ecosystems, mathematical models have become an important tool to examine processes and predict phenomena from local through to global scales. In recent years model studies, laboratory experiments and a better ecological understanding of the pelagic ecosystem have enabled advancements on fundamental challenges in oceanography, including marine production, biodiversity and anticipation of future conditions in the ocean. This research topic presents a number of studies that investigate functionally diverse organism in a dynamic ocean through diverse and novel modeling approaches.

Harvesting Plant and Microbial Biodiversity for Sustainably Enhanced Food Security

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454440 Year: Pages: 227 DOI: 10.3389/978-2-88945-444-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany --- Microbiology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

The World population will reach 9 billion by 2050, with the majority of this growth occurring in developing countries. On the other hand, one in nine of the World's population suffers from chronic hunger, the vast majority of which live in developing countries. We therefore need to find new and sustainable solutions to feed this increasing population and alleviate the predicted negative impact of global changes on crop production. This e-Book deals with new strategies to improve food security and livelihoods in rural communities, reduce vulnerability, increase resilience and mitigate lthe impact of climate change and land degradation on agriculture. This collection of 18 articles addresses the major abiotic factors limiting crop production worldwide, how to characterize and exploit the available plant biodiversity to increase production and sustainability in agrosystems, and the use of beneficial microbes to improve production and reduce the use of fertilizers and pesticides.

Listing 1 - 10 of 18 << page
of 2
>>
Sort by
Narrow your search

Publisher

Frontiers Media SA (18)


License

CC by (18)


Language

english (18)


Year
From To Submit

2019 (2)

2018 (6)

2017 (7)

2016 (2)

2014 (1)