Search results:
Found 6
Listing 1  6 of 6 
Sort by

Choose an application
Electrical power and energy systems are at the forefront of application developments in renewable energy, smart grids, electric aircrafts, electric and hybrid vehicles and much more. The associated technologies and control methods are crucial to achieving global targets in energy efficiency and lowcarbon operations, and will also contribute to key areas such as energy security. The greatest challenges occur when we combine new technologies at largescale and often complex system level. The Special Edition will cover theoretical developments with special emphasis on applications in electrical power and energy systems. Topics covered include:Renewable Energy Systems: Energy management; hybrid systems; distributed systems; renewable sources and integration; transient energy storage, charging networks.Electrical Machines, Drives and Applications: AC and DC machines and drives; multiscale systems modeling; remote monitoring and diagnosis; electric and hybrid vehicles; energy conversion, vehicle to grid interaction.Power Electronic Systems: Converters and emerging technologies; modeling simulation and control; power factor correction; power supplies; active filters; reliability and fault tolerance.Electrical Power Generation Systems: Modeling and simulation of electrical power systems; load management; power quality; distribution reliability; distributed and islanded power systems, sensor networks, communication and control.Electrical Power Systems Modeling and Control: Modeling and control methodologies and applications; intelligent systems; optimization and advanced heuristics; adaptive systems; robust control.
power systems  energy systems  energy management  electrical power systems  renewable energy  electrical machines  electrical drives  power electronics  energy conversion  power generation  distributed power systems  electric vehicles
Choose an application
Climate change, urban air quality, and dependency on crude oil are important societal challenges. In the transportation sector especially, clean and energy efficient technologies must be developed. Electric vehicles (EVs) and plugin hybrid electric vehicles (PHEVs) have gained a growing interest in the vehicle industry. Nowadays, the commercialization of EVs and PHEVs has been possible in different applications (i.e., light duty, medium duty, and heavy duty vehicles) thanks to the advances in energy storage systems, power electronics converters (including DC/DC converters, DC/AC inverters, and battery charging systems), electric machines, and energy efficient power flow control strategies. This book is based on the Special Issue of the journal Applied Sciences on “PlugIn Hybrid Electric Vehicles (PHEVs)”. This collection of research articles includes topics such as novel propulsion systems, emerging power electronics and their control algorithms, emerging electric machines and control techniques, energy storage systems, including BMS, and efficient energy management strategies for hybrid propulsion, vehicletogrid (V2G), vehicletohome (V2H), gridtovehicle (G2V) technologies, and wireless power transfer (WPT) systems.
battery power  convex optimization  dynamic programming  engineon power  plugin hybrid electric vehicle  simulated annealing  electric vehicle  openend winding  dual inverter  voltage vector distribution  power sharing  energy management  rangeextender  CO2  air quality  mobility needs  LCA  Paris Agreement  hybrid energy storage system  lithiumion battery  lithiumion capacitor  lifetime model  power distribution  state of health estimation  adaptive neuronfuzzy inference system (ANFIS)  group method of data handling (GMDH)  artificial neural network (ANN)  electric vehicles (EVs)  capacity degradation  lithiumion battery  timedelay input  interleaved multiport converte  multiobjective genetic algorithm  hybrid electric vehicles  losses model  wide bandgap (WBG) technologies  Energy Storage systems  LCA  WelltoWheel  electric vehicle  plugin hybrid  electricity mix  consequential  attributional  marginal  system modelling  energy system  metaanalysis  parallel hybrid electric vehicle  regenerative braking  fuel consumption characteristics  energy efficiency  state of charge  lithium polymer battery  electric vehicle  Plugin Hybrid electric vehicle  Liion battery  modelling  measurements  state of charge  strong track filter  modified onestate hysteresis model  Li(Ni1/3Co1/3Mn1/3)O2 battery  energy management strategy  Markov decision process (MDP)  plugin hybrid electric vehicles (PHEVs)  Qlearning (QL)  reinforcement learning (RL)  novel propulsion systems  emerging power electronics  including wide bandgap (WBG) technology  emerging electric machines  efficient energy management strategies for hybrid propulsion systems  energy storage systems  lifecycle assessment (LCA)
Choose an application
This book focuses on sustainable energy systems. While several innovative and alternative concepts are presented, the topics of energy policy, life cycle assessment, thermal energy, and renewable energy also play a major role. Models on various temporal and geographical scales are developed to understand the conditions of technical as well as organizational change. New methods of modeling, which can fulfil technical and physical boundary conditions and nevertheless consider economic environmental and social aspects, are also developed.
Active Disturbance Rejection Control  Probabilistic Robustness  Monte Carlo  secondary air regulation  areal grey relational analysis  fuzzy rough set  game theory  AHP  uncertainty analysis  coalfired power unit  renewable energy  biomass  torrefaction  grindability  rotary reactor  generation system scheduling  integrated model  basic plan for longterm electricity supply and demand  forecasting model for electricity demand  biomass  Pinus pinaster  fuel  heating value  fuelwood value index  energy density  ash recovery  peach  Energy LifeCycle Assessment  postharvest  fuzzy logic control  artificial neural networks control  tidal stream generator  swell effect disturbance  doubly fed induction generator  maximum power point tracking  capacity investment  market power  wind resources  dynamic planning  stochastic approach  levelized cost of energy  photovoltaic with energy storage system  HOMER simulation  LCOE comparison  sensitivity analysis  transient impact  renewable energy source penetration  power system stability  robust optimization  renewable energy  flexibility  deficit  uncertainty  flexible resource  energy storage systems  active power harmonics filter  electrostatic devices  hysteresis switching  opamp  power electronics  power supply reliability  electricity  manufacturing industry  choice experiment  willingness to pay  nexus concept  energy modelling  resource efficiency  renewable energy  lowcarbon economy  forecasting  multilayer perception  photovoltaic  sustainable energy  pseudoHuber loss  energy from biomass  textile industrial sector  alternative energy  SWOT analysis  energy costs  Internet of Things  thermodynamic cycle concepts  sustainability  modified cycle concepts  efficiency  energy systems  renewable energies  wind power plants  hollow rollers  large bearings
Choose an application
This book offers a collection of 30 scientific papers which address the problems associated with the use of power electronic converters in renewable energy sourcebased systems. Relevant problems associated with the use of power electronic converters to integrate renewable energy systems to the power grid are presented. Some of the covered topics relate to the integration of photovoltaic and wind energy generators into the rest of the system, and to the use of energy storage to mitigate power fluctuations, which are a characteristic of renewable energy systems. The book provides a good overview of the abovementioned topics.
modular multilevel converter  battery energy storage system  stateofcharge balancing  secondlife battery  multienergy complementary  microgrid  demand response  operation optimization  electricity price  peakcurrentmode control  dynamic modeling  dutyratio constraints  discontinuous conduction mode  FACTS devices  active power filter  static compensator  control strategies  gridconnected converter  SPWM  SVM  maximum power point tracking  open circuit voltage  perturb and observe  thermoelectric generator  twostage photovoltaic power  virtual synchronous generator  adaptiveMPPT (maximum power point tracking)  improvedVSG (virtual synchronous generator)  power matching  failure zone  governor  frequency regulation  inverter  voltagetype control  static frequency characteristics  gridconnected converter  adaptive resonant controller  PLL  impedance analysis  distorted grid  digital signal processor (DSP) TMS320F28335  gridconnected inverter  internal model  linear quadratic regulator  LCL filter  photovoltaic systems  multilevel power converter  soft switching  selective harmonic mitigation  phase shifted  voltage cancellation  adaptive control  sliding mode control  speed control  wind energy system  microgrid (MG)  droop control  washout filter  hardware in the loop (HIL)  active frontend converter  backtoback converter  permanent magnet synchronous generator (PMSG)  THD  type4 wind turbine  wind energy system  OpalRT Technologies®  synchronization  adaptive notch filter (ANF)  phaselocked loop (PLL)  wind power prediction  phase space reconstruction  multivariate linear regression  cloud computing  time series  multiple VSGs  oscillation mitigation  coordinated control  smallsignal and transient stability  coordination control  energy storage  grid support function  inertia  photovoltaic  virtual synchronous generator  weak grid  parallel inverters  oscillation suppression  notch filter  impedance reshaping  boost converter  peakcurrentmode control  dynamic modeling  discontinuous operation mode  doublyfed induction generator  shortcircuit fault  frequency regulation  variable power tracking control  improved additional frequency control  variable coefficient regulation  inertia and damping characteristics  generator speed control  electrical power generation  turbine and generator  gridconnected converter  organic Rankine cycle  renewable energy  multiport converter (MPC)  single ended primary inductor converter (SEPIC)  multiinput single output (MISO)  renewable power system  coupled oscillators  virtual impedance  synchronization  power converters  droop control  virtual admittance  distributed generation  energy  renewable energy  microgrids  Energy Internet  energy router  microgrid  electric vehicle  PV  batteryenergy storage  DCAC power converters  impedance emulation  stability analysis  powerhardwarein theloop  photovoltaic generators  maximum power point tracking  step size  perturbation frequency  source and load impedance  transient dynamics  stability  grid synchronization  power electronics  power grid  inverter  gridconnected  microgrid  experiment  modules  synchronverter  power ripple elimination  resonant controller  unbalanced power grid  ROCOF  PLL  error  low inertia  VSC  n/a
Choose an application
Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of gridconnected converters and ?smart control of power electronics in devices, microgrids, and at system levels.
energy storage  lithiumion battery  battery management system BMS  battery modeling  state of charge SoC  gridconnected inverter  power electronics  multiobjective optimization  switching frequency  total demand distortion  switching losses  EMI filter  power converter  power density  optimal design  electrical drives  axial flux machines  magnetic equivalent circuit  torque ripple  back EMF  permanentmagnet machines  fivephase permanent magnet synchronous machine  fiveleg voltage source inverter  multiphase space vector modulation  sliding mode control  extended Kalman filter  voltage source inverters (VSI)  voltage control  current control  digital control  predictive controllers  advanced controllers  stability  response time  lithiumion batteries  electric vehicles  battery management system  electric power  dynamic PV model  gridconnected VSI  HFlink MPPT converter  nanocrystalline core  SiC PV Supply  DC–DC converters  multilevel control  renewable energy resources control  electrical engineering communications  microgrid control  distributed control  power system operation and control  variable speed pumped storage system  droop control  vector control  phasor model technique  nine switch converter  synchronous generator  digital signal controller  static compensator, distribution generation  hybrid converter  multilevel converter (MLC)  series active filter  power factor correction (PFC)  fieldprogrammable gate array  particle swarm optimization  selective harmonic elimination method  voltage source converter  plugin hybrid electric vehicles  power management system  renewable energy sources  fuzzy  smart microgrid  fivephase machine  faulttolerant control  induction motor  one phase open circuit fault (1Ph)  adjacent twophase open circuit fault (A2Ph)  voltperhertz control (scalar control)  currentfed inverter  LCLS topology  semiactive bridge  soft switching  voltage boost  wireless power transfer  DC–DC conversion  zerovoltage switching (ZVS)  transient control  DC–DC conversion  bidirectional converter  power factor correction  line frequency instability  one cycle control  nonlinear phenomena  bifurcation  boost converter  converter  ice melting  modular multilevel converter (MMC)  optimization design  transmission line  static var generator (SVG)  hardwareintheloop  floatingpoint  fixedpoint  realtime emulation  field programmable gate array  slim DClink drive  VPI active damping control  total harmonic distortion  cogging torque  realtime simulation  power converters  nonlinear control  embedded systems  high level programing  SHIL  DHIL  4T analog MOS control  high frequency switching power supply  water purification  modulation index  electromagnetic interference  chaotic PWM  DCDC buck converter  CMOS chaotic circuit  triangular ramp generator  spreadspectrum technique  system in package  electric vehicle  wireless power transfer  inductive coupling  coupling factor  phaseshift control  seriesseries compensation  PSpice  fixedfrequency double integral slidingmode (FFDISM)  classD amplifier  Qfactor  GaN cascode  direct torque control (DTC)  composite active vectors modulation (CVM)  permanent magnet synchronous motor (PMSM)  effect factors  double layer capacitor (DLC) models  energy storage modelling  simulation models  current control loops  dual threephase (DTP) permanent magnet synchronous motors (PMSMs)  space vector pulse width modulation (SVPWM)  vector control  voltage source inverter  active rectifiers  singleswitch  analog phase control  digital phase control  wireless power transfer  threelevel boost converter (TLBC)  DClink cascade Hbridge (DCLCHB) inverter  conducting angle determination (CAD) techniques  total harmonic distortion (THD)  threephase bridgeless rectifier  fault diagnosis  fault tolerant control  hardware in loop  compensation topology  electromagnetic field (EMF)  electromagnetic field interference (EMI)  misalignment  resonator structure  wireless power transfer (WPT)  WPT standards  EMI filter  electromagnetic compatibility  AC–DC power converters  electromagnetic interference filter  matrix converters  current source  power density  battery energy storage systems  battery chargers  active receivers  frequency locking  reference phase calibration  synchronization  wireless power transfer  lithiumion batteries  SOC estimator  parameter identification  particle swarm optimization  improved extended Kalman filter  battery management system  PMSG  DClink voltage control  variable control gain  disturbance observer  lithiumion power battery pack  composite equalizer  active equalization  passive equalization  control strategy and algorithm  n/a  commonmode inductor  highfrequency modeling  electromagnetic interference  filter  fault diagnosis  condition monitoring  induction machines  support vector machines  expert systems  neural networks  DCAC power converters  frequencydomain analysis  impedancebased model  Nyquist stability analysis  small signal stability analysis  harmonic linearization  line start  permanent magnet  synchronous motor  efficiency motor  rotor design  harmonics  hybrid power filter  active power filter  power quality  total harmonic distortion  equivalent inductance  leakage inductance  switching frequency modelling  induction motor  current switching ripple  multilevel inverter  cascaded topology  voltage doubling  switched capacitor  nearest level modulation (NLM)  total harmonic distortion (THD)  deadtime compensation  power converters  harmonics  n/a
Choose an application
Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of gridconnected converters and ?smart control of power electronics in devices, microgrids, and at system levels.
energy storage  lithiumion battery  battery management system BMS  battery modeling  state of charge SoC  gridconnected inverter  power electronics  multiobjective optimization  switching frequency  total demand distortion  switching losses  EMI filter  power converter  power density  optimal design  electrical drives  axial flux machines  magnetic equivalent circuit  torque ripple  back EMF  permanentmagnet machines  fivephase permanent magnet synchronous machine  fiveleg voltage source inverter  multiphase space vector modulation  sliding mode control  extended Kalman filter  voltage source inverters (VSI)  voltage control  current control  digital control  predictive controllers  advanced controllers  stability  response time  lithiumion batteries  electric vehicles  battery management system  electric power  dynamic PV model  gridconnected VSI  HFlink MPPT converter  nanocrystalline core  SiC PV Supply  DC–DC converters  multilevel control  renewable energy resources control  electrical engineering communications  microgrid control  distributed control  power system operation and control  variable speed pumped storage system  droop control  vector control  phasor model technique  nine switch converter  synchronous generator  digital signal controller  static compensator, distribution generation  hybrid converter  multilevel converter (MLC)  series active filter  power factor correction (PFC)  fieldprogrammable gate array  particle swarm optimization  selective harmonic elimination method  voltage source converter  plugin hybrid electric vehicles  power management system  renewable energy sources  fuzzy  smart microgrid  fivephase machine  faulttolerant control  induction motor  one phase open circuit fault (1Ph)  adjacent twophase open circuit fault (A2Ph)  voltperhertz control (scalar control)  currentfed inverter  LCLS topology  semiactive bridge  soft switching  voltage boost  wireless power transfer  DC–DC conversion  zerovoltage switching (ZVS)  transient control  DC–DC conversion  bidirectional converter  power factor correction  line frequency instability  one cycle control  nonlinear phenomena  bifurcation  boost converter  converter  ice melting  modular multilevel converter (MMC)  optimization design  transmission line  static var generator (SVG)  hardwareintheloop  floatingpoint  fixedpoint  realtime emulation  field programmable gate array  slim DClink drive  VPI active damping control  total harmonic distortion  cogging torque  realtime simulation  power converters  nonlinear control  embedded systems  high level programing  SHIL  DHIL  4T analog MOS control  high frequency switching power supply  water purification  modulation index  electromagnetic interference  chaotic PWM  DCDC buck converter  CMOS chaotic circuit  triangular ramp generator  spreadspectrum technique  system in package  electric vehicle  wireless power transfer  inductive coupling  coupling factor  phaseshift control  seriesseries compensation  PSpice  fixedfrequency double integral slidingmode (FFDISM)  classD amplifier  Qfactor  GaN cascode  direct torque control (DTC)  composite active vectors modulation (CVM)  permanent magnet synchronous motor (PMSM)  effect factors  double layer capacitor (DLC) models  energy storage modelling  simulation models  current control loops  dual threephase (DTP) permanent magnet synchronous motors (PMSMs)  space vector pulse width modulation (SVPWM)  vector control  voltage source inverter  active rectifiers  singleswitch  analog phase control  digital phase control  wireless power transfer  threelevel boost converter (TLBC)  DClink cascade Hbridge (DCLCHB) inverter  conducting angle determination (CAD) techniques  total harmonic distortion (THD)  threephase bridgeless rectifier  fault diagnosis  fault tolerant control  hardware in loop  compensation topology  electromagnetic field (EMF)  electromagnetic field interference (EMI)  misalignment  resonator structure  wireless power transfer (WPT)  WPT standards  EMI filter  electromagnetic compatibility  AC–DC power converters  electromagnetic interference filter  matrix converters  current source  power density  battery energy storage systems  battery chargers  active receivers  frequency locking  reference phase calibration  synchronization  wireless power transfer  lithiumion batteries  SOC estimator  parameter identification  particle swarm optimization  improved extended Kalman filter  battery management system  PMSG  DClink voltage control  variable control gain  disturbance observer  lithiumion power battery pack  composite equalizer  active equalization  passive equalization  control strategy and algorithm  n/a  commonmode inductor  highfrequency modeling  electromagnetic interference  filter  fault diagnosis  condition monitoring  induction machines  support vector machines  expert systems  neural networks  DCAC power converters  frequencydomain analysis  impedancebased model  Nyquist stability analysis  small signal stability analysis  harmonic linearization  line start  permanent magnet  synchronous motor  efficiency motor  rotor design  harmonics  hybrid power filter  active power filter  power quality  total harmonic distortion  equivalent inductance  leakage inductance  switching frequency modelling  induction motor  current switching ripple  multilevel inverter  cascaded topology  voltage doubling  switched capacitor  nearest level modulation (NLM)  total harmonic distortion (THD)  deadtime compensation  power converters  harmonics  n/a
Listing 1  6 of 6 
Sort by
