Search results: Found 24

Listing 1 - 10 of 24 << page
of 3
>>
Sort by
Replication-Competent Reporter-Expressing Viruses

ISBN: 9783038422587 9783038422594 Year: Pages: XVI, 322 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2016-10-31 16:58:45
License:

Loading...
Export citation

Choose an application

Abstract

Recombinant viruses expressing reporter fluorescent or bioluminescent proteins are an excellent option to evaluate the dynamics of viral infection progression in both cultured cells and/or validated animal models of viral infection. Reporter proteins are valid surrogates for direct detection of infected cells in vitro and in vivo, without the use of secondary methodologies to identify infected cells. By eliminating the need of secondary labeling, tractable replicating-competent, reporter-expressing viruses provide an ideal approach to monitor viral infections in real time, representing a significant advance in the study of the biology of viruses, to evaluate vaccination approaches, and to identify new therapeutics against viral infections using high-throughput screening settings. In this Special Issue “Replication-Competent Reporter-Expressing Viruses” we review replication-competent, reporter-expressing viruses belonging to different families, methods of characterization, and applications to facilitate the study of in vitro and in vivo viral infections. We also seek to discuss disadvantages and limitations associated with these reporter-expressing viruses. Finally, we provide rational future perspectives and additional avenues for the development, characterization, and applications of recombinant, reporter-expressing, competent viruses.

The Identification of the Genetic Components of Autism Spectrum Disorders 2017

Author:
ISBN: 9783038425205 9783038425212 Year: Pages: X, 462 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2017-10-27 12:54:46
License:

Loading...
Export citation

Choose an application

Abstract

This textbook is dedicated to the study of genetic factors contributing to autism and includes a collection of original research and review articles related to this topic. Autism spectrum disorders (ASD) include a collection of neurodevelopmental disorders characterized by three recognized behavioral domains involving difficulties in communication, social interaction and repetitive behavior. ASD affects 1 to 2 percent of children and is on the increase worldwide. Significant genetic contributions and mechanisms underlie the causation of ASD. Advances in genetic technology and better awareness have led to a diagnosis of 50 to 70 percent of individuals with ASD primarily due to chromosomal abnormalities, submicroscopic deletions or duplications now identified with high-resolution microarray analysis, next-generation DNA (exome) sequencing of gene variants or mutations, recognized single gene disorders or metabolic disturbances. Through discovery by searching genomic databases and peer-reviewed research articles, nearly 800 genes have been identified to contribute to ASD. Highlights in the field of autism research, discovery and identification of genetic components with characterization will be addressed. Furthermore, reviews of current understanding of the causes and diagnostic approaches for ASD and related syndromes will be presented along with discussion of psychiatric/behavior comorbidities and related features, environmental risk factors, parental attitudes and treatment.

Molecular Genetics, Genomics and Biotechnology of Crop Plants Breeding

Author:
ISBN: 9783039288779 / 9783039288786 Year: Pages: 238 DOI: 10.3390/books978-3-03928-878-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Plant Sciences
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue on molecular genetics, genomics, and biotechnology in crop plant breeding seeks to encourage the use of the tools currently available. It features nine research papers that address quality traits, grain yield, and mutations by exploring cytoplasmic male sterility, the delicate control of flowering in rice, the removal of anti-nutritional factors, the use and development of new technologies for non-model species marker technology, site-directed mutagenesis and GMO regulation, genomics selection and genome-wide association studies, how to cope with abiotic stress, and an exploration of fruit trees adapted to harsh environments for breeding purposes. A further four papers review the genetics of pre-harvest spouting, readiness for climate-smart crop development, genomic selection in the breeding of cereal crops, and the large numbers of mutants in straw lignin biosynthesis and deposition.

Keywords

phloem metabolites --- electrospray ionisation --- mass spectrometry --- cultivar --- quality groups --- nitrogen --- faba bean --- zt-1 --- linkage map --- SSR --- ISSR --- Brassica napus --- GmDof4 --- GmDof11 --- oleic acid --- fatty acid composition --- differentially expressed genes --- drought --- RNA-seq --- RNA editing --- wheat --- climate change --- mapping populations --- genetic resources --- mutation breeding --- genome editing --- new plant breeding techniques --- “omics” data --- bioinformatics --- rice --- CRISPR/Cas9 --- Wx --- TGW6 --- mutations --- maintainer --- cytoplasmic male sterile --- amylose content --- anther --- protein --- cytoplasmic male sterility --- fertility restoration --- sunflower --- Rf1 gene --- GWAS --- Pentatricopeptide Repeats --- PPR genes --- association mapping --- candidate genes --- gene mapping --- lodicule --- non-open hull 1(noh1) --- rice --- crops --- quantitative genetics --- estimated breeding value --- genomic prediction --- plant breeding --- breeding scheme --- pedigree --- genetic value --- wheat --- pre-harvest sprouting --- seed dormancy --- abscisic acid --- gibberellin --- QTL/genes --- brown midrib --- cell wall --- gold hull and internode --- grass family --- lignin --- monolignol pathway --- mutational breeding --- orange lemma --- transgenic cereals --- SNP --- SSR --- next generation sequencing --- genotyping by sequencing --- Japanese plum --- SSR --- diversity --- genetic structure --- candidate genes --- genomic selection --- mutants --- ddRAD sequencing --- genotyping-by-sequencing --- CRISPR/Cas9 site directed mutagenesis --- genome-wide association scan --- genetic modification --- F1 hybrids --- QTL

Antimicrobial Resistance in Environmental Waters

Authors: ---
ISBN: 9783038976080 9783038976097 Year: Pages: 188 DOI: 10.3390/books978-3-03897-609-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-05-09 17:16:14
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue on Antimicrobial Resistance in Environmental Waters features 11 articles on the monitoring and surveillance of antimicrobial resistance (AMR) in natural aquatic systems (i.e., reservoirs, rivers), and effluent discharge from water treatment plants to assess the effectiveness of AMR removal and resulting loads in treated waters.&nbsp;Some of the key elements of AMR studies presented in this Special Issue highlight the underlying drivers of AMR contamination in the environment and the evaluation of the hazard imposed on aquatic organisms in receiving environments through ecological risk assessments. As described in this Issue, screening antimicrobial peptide (AMP) libraries for biofilm disruption and antimicrobial candidates are promising avenues for the development of new treatment options to eradicate resistance.

Plant Development and Organogenesis: From Basic Principles to Applied Research

Author:
ISBN: 9783039281268 9783039281275 Year: Pages: 246 DOI: 10.3390/books978-3-03928-127-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Plant Sciences --- Biology --- Science (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

The way plants grow and develop organs significantly impacts the overall performance and yield of crop plants. The basic knowledge now available in plant development has the potential to help breeders in generating plants with defined architectural features to improve productivity. Plant translational research effort has steadily increased over the last decade due to the huge increase in the availability of crop genomic resources and Arabidopsis-based sequence annotation systems. However, a consistent gap between fundamental and applied science has yet to be filled. One critical point often brought up is the unreadiness of developmental biologists on one side to foresee agricultural applications for their discoveries, and of the breeders to exploit gene function studies to apply to candidate gene approaches when advantageous on the other. In this book, both developmental biologists and breeders make a special effort to reconcile research on the basic principles of plant development and organogenesis with its applications to crop production and genetic improvement. Fundamental and applied science contributions intertwine and chase each other, giving the reader different but complementary perspectives from only apparently distant corners of the same world.

Keywords

wheat-rye hybrids --- genes of reproductive isolation --- stem apical meristem --- molecular marker --- Rht18 --- reduced height --- wheat --- semi-dwarf --- linkage map --- CLE --- CLV --- WUS --- stem cells --- meristem --- SAM --- signaling --- locule --- Arabidopsis --- auxin --- HD-Zip transcription factors --- light environment --- photoreceptors --- wounding --- root plasticity --- hydrogen peroxide --- protoxylem --- plant development and organogenesis --- proline biosynthesis --- RolD --- rol genes --- Vasculature --- Organogenesis --- Development --- Brassicaceae --- Asteraceae --- flowering time --- photoperiod --- vernalization --- ambient temperature --- gibberellins --- age --- plant breeding --- grass --- ligule --- organogenesis --- boundaries --- shoot meristem --- morphogenesis --- molecular regulation --- cell wall --- cytoskeleton --- Arabidopsis --- root --- stem cells --- root development --- differentiation --- ground tissue --- radial patterning --- proximodistal patterning --- Plant in vitro cultures --- somatic cell selection --- hairy roots --- rol genes --- Agrobacterium rhizogenes --- genetic transformation --- recalcitrant species --- KNOX transcription factors --- plant development --- tree phase change --- transformation --- morphogenic --- embryogenesis --- meristem formation --- organogenesis --- GRETCHEN HAGEN 3 (GH3) IAA-amido synthase group II --- root apical meristem --- auxin --- cytokinin --- lateral root cap --- auxin minimum --- auxin conjugation --- plant development and organogenesis --- translational research --- crop productivity --- genetic improvement --- Arabidopsis thaliana --- regulatory networks --- phytohormones --- rol genes --- plant cell and tissue culture

Systems Analytics and Integration of Big Omics Data

Author:
ISBN: 9783039287444 / 9783039287451 Year: Pages: 202 DOI: 10.3390/books978-3-03928-745-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

A “genotype"" is essentially an organism's full hereditary information which is obtained from its parents. A ""phenotype"" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye color, metabolism, etc. One of the pressing challenges in computational and systems biology is genotype-to-phenotype prediction. This is challenging given the amount of data generated by modern Omics technologies. This “Big Data” is so large and complex that traditional data processing applications are not up to the task. Challenges arise in collection, analysis, mining, sharing, transfer, visualization, archiving, and integration of these data. In this Special Issue, there is a focus on the systems-level analysis of Omics data, recent developments in gene ontology annotation, and advances in biological pathways and network biology. The integration of Omics data with clinical and biomedical data using machine learning is explored. This Special Issue covers new methodologies in the context of gene–environment interactions, tissue-specific gene expression, and how external factors or host genetics impact the microbiome.

Keywords

tissue-specific expressed genes --- transcriptome --- tissue classification --- support vector machine --- feature selection --- bioinformatics pipelines --- algorithm development for network integration --- miRNA–gene expression networks --- multiomics integration --- network topology analysis --- candidate genes --- gene–environment interactions --- logic forest --- systemic lupus erythematosus --- Gene Ontology --- KEGG pathways --- enrichment analysis --- proteomic analysis --- plot visualization --- Alzheimer’s disease --- dementia --- cognitive impairment --- neurodegeneration --- Gene Ontology --- annotation --- biocuration --- amyloid-beta --- microtubule-associated protein tau --- artificial intelligence --- genotype --- phenotype --- deep phenotype --- data integration --- genomics --- phenomics --- precision medicine informatics --- epigenetics --- chromatin modification --- sequencing --- regulatory genomics --- disease variants --- machine learning --- multi-omics --- data integration --- curse of dimensionality --- heterogeneous data --- missing data --- class imbalance --- scalability --- genomics --- pharmacogenomics --- cell lines --- database --- drug sensitivity --- data integration --- omics data --- genomics --- RNA expression --- non-omics data --- clinical data --- epidemiological data --- challenges --- integrative analytics --- joint modeling --- multivariate analysis --- multivariate causal mediation --- distance correlation --- direct effect --- indirect effect --- causal inference --- n/a

Genetic Determinants of Human Longevity

Authors: --- ---
ISBN: 9783039216789 9783039216796 Year: Pages: 118 DOI: 10.3390/books978-3-03921-679-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Genetics
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

In the last two decades, due to the continuous increase of lifespans in Westernsocieties, and the consequent growing of the elderly population, have witnessedan increase in the number of studies on biological and molecular factors able topromote healthy aging and reach longevity. The study of the genetic componentof human longevity demonstrated that it accounts for 25% of intra populationphenotype variance. The efforts made to characterize the genetic determinantssuggested that the maintenance of cellular integrity, inflammation, oxidativestress response, DNA repair, as well as the use of nutrients, represent the mostimportant pathways correlated with a longer lifespan. However, although aplethora of variants were indicated to be associated with human longevity, onlyvery few were successfully replicated in different populations, probably becauseof population specificity, missing heritability as well as a complex interactionamong genetic factors with lifestyle and cultural factors, which modulate theindividual chance of living longer. Thus, many challenges remain to be addressedin the search for the genetic components of human longevity. This Special Issue isaimed to unify the progress in the analysis of the genetic determinants of humanlongevity, to take stock of the situation and point to future directions of the field.We invite submissions for reviews, research articles, short-communicationsdealing with genetic association studies in human longevity, including all types ofgenetic variation, as well as the characterization of longevity-related genes.

Plant Genetics and Molecular Breeding

Author:
ISBN: 9783039211753 9783039211760 Year: Pages: 628 DOI: 10.3390/books978-3-03921-176-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The development of new plant varieties is a long and tedious process involving the generation of large seedling populations for the selection of the best individuals. While the ability of breeders to generate large populations is almost unlimited, the selection of these seedlings is the main factor limiting the generation of new cultivars. Molecular studies for the development of marker-assisted selection (MAS) strategies are particularly useful when the evaluation of the character is expensive, time-consuming, or with long juvenile periods. The papers published in the Special Issue “Plant Genetics and Molecular Breeding” report highly novel results and testable new models for the integrative analysis of genetic (phenotyping and transmission of agronomic characters), physiology (flowering, ripening, organ development), genomic (DNA regions responsible for the different agronomic characters), transcriptomic (gene expression analysis of the characters), proteomic (proteins and enzymes involved in the expression of the characters), metabolomic (secondary metabolites), and epigenetic (DNA methylation and histone modifications) approaches for the development of new MAS strategies. These molecular approaches together with an increasingly accurate phenotyping will facilitate the breeding of new climate-resilient varieties resistant to abiotic and biotic stress, with suitable productivity and quality, to extend the adaptation and viability of the current varieties.

Keywords

sugarcane --- cry2A gene --- particle bombardment --- stem borer --- resistance --- NPK fertilizers --- agronomic traits --- molecular markers --- quantitative trait loci --- common wild rice --- Promoter --- Green tissue-specific expression --- light-induced --- transgenic chrysanthemum --- WRKY transcription factor --- salt stress --- gene expression --- DgWRKY2 --- Cucumis sativus L. --- RNA-Seq --- DEGs --- sucrose --- ABA --- drought stress --- Aechmea fasciata --- squamosa promoter binding protein-like --- flowering time --- plant architecture --- bromeliad --- Oryza sativa --- endosperm development --- rice quality --- WB1 --- the modified MutMap method --- abiotic stress --- Cicer arietinum --- candidate genes --- genetics --- heat-stress --- molecular breeding --- metallothionein --- Brassica --- Brassica napus --- As3+ stress --- broccoli --- cytoplasmic male sterile --- bud abortion --- gene expression --- transcriptome --- RNA-Seq --- sesame --- genome-wide association study --- yield --- QTL --- candidate gene --- cabbage --- yellow-green-leaf mutant --- recombination-suppressed region --- bulk segregant RNA-seq --- differentially expressed genes --- marker–trait association --- haplotype block --- genes --- root traits --- D-genome --- genotyping-by-sequencing --- single nucleotide polymorphism --- durum wheat --- bread wheat --- complex traits --- Brassica oleracea --- Ogura-CMS --- iTRAQ --- transcriptome --- pollen development --- rice --- OsCDPK1 --- seed development, starch biosynthesis --- endosperm appearance --- Chimonanthus praecox --- nectary --- floral scent --- gene expression --- Prunus --- flowering --- bisulfite sequencing --- genomics --- epigenetics --- breeding --- AP2/ERF genes --- Bryum argenteum --- transcriptome --- gene expression --- stress tolerance --- SmJMT --- transgenic --- Salvia miltiorrhiza --- overexpression --- transcriptome --- phenolic acids --- Idesia polycarpa var --- glycine --- FAD2 --- linoleic acid --- oleic acid --- anther wall --- tapetum --- pollen accumulation --- OsGPAT3 --- rice --- cytoplasmic male sterility (CMS) --- phytohormones --- differentially expressed genes --- pollen development --- Brassica napus --- Rosa rugosa --- RrGT2 gene --- Clone --- VIGS --- Overexpression --- Tobacco --- Flower color --- Anthocyanin --- sugarcane --- WRKY --- subcellular localization --- gene expression pattern --- protein-protein interaction --- transient overexpression --- soybean --- branching --- genome-wide association study (GWAS) --- near-isogenic line (NIL) --- BRANCHED1 (BRC1) --- TCP transcription factor --- Zea mays L. --- MADS transcription factor --- ZmES22 --- starch --- flowering time --- gene-by-gene interaction --- Hd1 --- Ghd7 --- rice --- yield trait --- Oryza sativa L. --- leaf shape --- yield trait --- molecular breeding --- hybrid rice --- nutrient use efficiency --- quantitative trait loci (QTLs), molecular markers --- agronomic efficiency --- partial factor productivity --- P. suffruticosa --- R2R3-MYB --- overexpression --- anthocyanin --- transcriptional regulation --- ethylene-responsive factor --- Actinidia deliciosa --- AdRAP2.3 --- gene expression --- waterlogging stress --- regulation --- Chrysanthemum morifolium --- WUS --- CYC2 --- gynomonoecy --- reproductive organ --- flower symmetry --- Hs1pro-1 --- cZR3 --- gene pyramiding --- Heterodera schachtii --- resistance --- tomato --- Elongated Internode (EI) --- QTL --- GA2ox7 --- n/a

MicroRNA as Biomarkers in Cancer Diagnostics and Therapy

Author:
ISBN: 9783039212491 9783039212507 Year: Pages: 166 DOI: 10.3390/books978-3-03921-250-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue celebrates the 25th anniversary of the discovery of the first microRNA. The size of the microRNome and complexity of animal body plans and organ systems suggests a role for microRNAs in cell fate determination and differentiation. More than 2000 sequences have been proposed to represent unique microRNA genes in humans, with an increasing number of mechanistic roles identified in developmental, physiological, and pathological processes. Thus, dysregulation of a few key microRNAs can have a profound global effect on the gene expression and molecular programs of a cell. This great potential for clinical intervention has captured the interest and imagination of researchers in many fields. However, very few fields have been as prolific as the field of cancer research. This Special Issue provides but a glimpse of the large body of literature of microRNA biology in cancer research, containing 4 original research studies and 4 review articles that focus on specific hematologic or solid tumors in disease. Collectively, these articles highlight state-of-the-art approaches and methodologies for microRNA detection in tissue, blood, and other body fluids in a range of biomarkers applications, from early cancer detection to prognosis and treatment response. The articles also address some of the challenges regarding clinical implementation.

Aging and Age-related Disorders: From Molecular Mechanisms to Therapies

Author:
ISBN: 9783039213559 9783039213566 Year: Pages: 322 DOI: 10.3390/books978-3-03921-356-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Aging of unicellular and multicellular eukaryotic organisms is a convoluted biological phenomenon, which is manifested as an age-related functional decline caused by progressive dysregulation of certain cellular and organismal processes. Many chronic diseases are associated with human aging. These aging-associated diseases include cardiovascular diseases, chronic obstructive pulmonary disease, chronic kidney disease, diabetes, osteoarthritis, osteoporosis, sarcopenia, stroke, neurodegenerative diseases (including Parkinson’s, Alzheimer’s, and Huntington’s diseases), and many forms of cancer. Studies in yeast, roundworms, fruit flies, fishes, mice, primates, and humans have provided evidence that the major aspects and basic mechanisms of aging and aging-associated pathology are conserved across phyla. The focus of this International Journal of Molecular Sciences Special Issue is on molecular and cellular mechanisms, diagnostics, and therapies and diseases of aging. Fifteen original research and review articles in this Special Issue provide important insights into how various genetic, dietary, and pharmacological interventions can affect certain longevity-defining cellular and organismal processes to delay aging and postpone the onset of age-related pathologies in evolutionarily diverse organisms. These articles outline the most important unanswered questions and directions for future research in the vibrant and rapidly evolving fields of mechanisms of biological aging, aging-associated diseases, and aging-delaying therapies.

Listing 1 - 10 of 24 << page
of 3
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (24)


License

CC by-nc-nd (24)


Language

english (21)

eng (3)


Year
From To Submit

2020 (7)

2019 (15)

2017 (1)

2016 (1)