Search results: Found 3

Listing 1 - 3 of 3
Sort by
Maintenance of Genome Integrity: DNA Damage Sensing, Signaling, Repair and Replication in Plants

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198207 Year: Pages: 129 DOI: 10.3389/978-2-88919-820-7 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Environmental stresses and metabolic by-products can severely affect the integrity of genetic information by inducing DNA damage and impairing genome stability. As a consequence, plant growth and productivity are irreversibly compromised. To overcome genotoxic injury, plants have evolved complex strategies relying on a highly efficient repair machinery that responds to sophisticated damage perception/signaling networks. The DNA damage signaling network contains several key components: DNA damage sensors, signal transducers, mediators, and effectors. Most of these components are common to other eukaryotes but some features are unique to the plant kingdom. ATM and ATR are well-conserved members of PIKK family, which amplify and transduce signals to downstream effectors. ATM primarily responds to DNA double strand breaks while ATR responds to various forms of DNA damage. The signals from the activated transducer kinases are transmitted to the downstream cell-cycle regulators, such as CHK1, CHK2, and p53 in many eukaryotes. However, plants have no homologue of CHK1, CHK2 nor p53. The finding of Arabidopsis transcription factor SOG1 that seems functionally but not structurally similar to p53 suggests that plants have developed unique cell cycle regulation mechanism. The double strand break repair, recombination repair, postreplication repair, and lesion bypass, have been investigated in several plants. The DNA double strand break, a most critical damage for organisms are repaired non-homologous end joining (NHEJ) or homologous recombination (HR) pathway. Damage on template DNA makes replication stall, which is processed by translesion synthesis (TLS) or error-free postreplication repair (PPR) pathway. Deletion of the error-prone TLS polymerase reduces mutation frequencies, suggesting PPR maintains the stalled replication fork when TLS is not available. Unveiling the regulation networks among these multiple pathways would be the next challenge to be completed. Some intriguing issues have been disclosed such as the cross-talk between DNA repair, senescence and pathogen response and the involvement of non-coding RNAs in global genome stability. Several studies have highlighted the essential contribution of chromatin remodeling in DNA repair. DNA damage sensing, signaling and repair have been investigated in relation to environmental stresses, seed quality issues, mutation breeding in both model and crop plants and all these studies strengthen the idea that components of the plant response to genotoxic stress might represent tools to improve stress tolerance and field performance. This focus issue gives researchers the opportunity to gather and interact by providing Mini-Reviews, Commentaries, Opinions, Original Research and Method articles which describe the most recent advances and future perspectives in the field of DNA damage sensing, signaling and repair in plants. A comprehensive overview of the current progresses dealing with the genotoxic stress response in plants will be provided looking at cellular and molecular level with multidisciplinary approaches. This will hopefully bring together valuable information for both plant biotechnologists and breeders.

Grappling with the Multifaceted World of the DNA Damage Response

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450572 Year: Pages: 306 DOI: 10.3389/978-2-88945-057-2 Language: English
Publisher: Frontiers Media SA
Subject: Genetics --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

DNA damage is a major threat to genomic integrity and cell survival. It can arise both spontaneously and in response to exogenous agents. DNA damage can attack most parts of the DNA structure, ranging from minor and major chemical modifications, to single-strand breaks (SSBs) and gaps, to full double-strand breaks (DSBs). If DNA injuries are mis-repaired or unrepaired, they may ultimately result in mutations or wider-scale genome aberrations that threaten cell homeostasis. Consequently, the cells elicit an elaborate signalling network, known as DNA damage response (DDR), to detect and repair these cytotoxic lesions. This Research Topic was aimed at comprehensive investigations of basic and novel mechanisms that underlie the DNA damage response in eukaryotes.DNA damage is a major threat to genomic integrity and cell survival. It can arise both spontaneously and in response to exogenous agents. DNA damage can attack most parts of the DNA structure, ranging from minor and major chemical modifications, to single-strand breaks (SSBs) and gaps, to full double-strand breaks (DSBs). If DNA injuries are mis-repaired or unrepaired, they may ultimately result in mutations or wider-scale genome aberrations that threaten cell homeostasis. Consequently, the cells elicit an elaborate signalling network, known as DNA damage response (DDR), to detect and repair these cytotoxic lesions. This Research Topic was aimed at comprehensive investigations of basic and novel mechanisms that underlie the DNA damage response in eukaryotes.

DNA Replication Stress

Author:
ISBN: 9783039213894 9783039213900 Year: Pages: 368 DOI: 10.3390/books978-3-03921-390-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue of International Journal of Molecular Sciences (IJMS) is dedicated to the mechanisms mediated at the molecular and cellular levels in response to adverse genomic perturbations and DNA replication stress. The relevant proteins and processes play paramount roles in nucleic acid transactions to maintain genomic stability and cellular homeostasis. A total of 18 articles are presented which encompass a broad range of highly relevant topics in genome biology. These include replication fork dynamics, DNA repair processes, DNA damage signaling and cell cycle control, cancer biology, epigenetics, cellular senescence, neurodegeneration, and aging. As Guest Editor for this IJMS Special Issue, I am very pleased to offer this collection of riveting articles centered on the theme of DNA replication stress. The blend of articles builds upon a theme that DNA damage has profound consequences for genomic stability and cellular homeostasis that affect tissue function, disease, cancer, and aging at multiple levels and through unique mechanisms. I thank the authors for their excellent contributions, which provide new insight into this fascinating and highly relevant area of genome biology.

Keywords

barley --- chromosome --- DNA replication pattern --- EdU --- mutagens --- DNA replication --- DNA damage --- DNA repair --- genome integrity --- A549 cells --- H1299 cells --- heterogeneity --- DNA damage response --- 8-chloro-adenosine --- DNA replication --- S phase --- origin firing --- TopBP1 --- ATR --- DNA fiber assay --- APE2 --- ATR-Chk1 DDR pathway --- Genome integrity --- SSB end resection --- SSB repair --- SSB signaling --- DNA replication stress --- genome stability --- ubiquitin --- replication fork restart --- translesion synthesis --- template-switching --- homologous recombination --- Fanconi Anemia --- G protein-coupled receptor (GPCR) --- aging --- DNA damage --- ?-arrestin --- G protein-coupled receptor kinase (GRK) --- interactome --- G protein-coupled receptor kinase interacting protein 2 (GIT2) --- ataxia telangiectasia mutated (ATM) --- clock proteins --- energy metabolism --- neurodegeneration --- cellular senescence --- ageing --- Alzheimer’s disease --- multiple sclerosis --- Parkinson’s disease --- lipofuscin --- SenTraGorTM (GL13) --- senolytics --- DNA replication --- DNA repair --- DNA damage response --- DNA translocation --- DNA helicase --- superfamily 2 ATPase --- replication restart --- fork reversal --- fork regression --- chromatin remodeler --- C9orf72 --- ALS --- motor neuron disease --- R loops, nucleolar stress --- neurodegeneration --- Difficult-to-Replicate Sequences --- replication stress --- non-B DNA --- Polymerase eta --- Polymerase kappa --- genome instability --- common fragile sites --- Microsatellites --- cancer --- DNA double-strand repair --- premature aging --- post-translational modification --- protein stability --- replication stress --- Werner Syndrome --- Werner Syndrome Protein --- dormant origins --- replicative stress --- replication timing --- DNA damage --- genome instability --- cancer --- Thermococcus eurythermalis --- endonuclease IV --- AP site analogue --- spacer --- DNA repair --- DNA repair --- double strand break repair --- exonuclease 1 --- EXO1 --- mismatch repair --- MMR --- NER --- nucleotide excision repair --- strand displacements --- TLS --- translesion DNA synthesis --- POL? --- mutation frequency --- mutations spectra --- SupF --- mutagenicity --- oxidative stress --- DNA damage --- DNA repair --- replication --- 8-oxoG --- epigenetic --- gene expression --- helicase --- cell cycle checkpoints --- genomic instability --- G2-arrest --- cell death --- repair of DNA damage --- adaptation --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

Frontiers Media SA (2)

MDPI - Multidisciplinary Digital Publishing Institute (1)


License

CC by (2)

CC by-nc-nd (1)


Language

english (3)


Year
From To Submit

2019 (1)

2017 (1)

2016 (1)